[PDF] Self Supervised Learning - eBooks Review

Self Supervised Learning


Self Supervised Learning
DOWNLOAD

Download Self Supervised Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Self Supervised Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Self Supervised Learning


Self Supervised Learning
DOWNLOAD
Author : Robert Johnson
language : en
Publisher: HiTeX Press
Release Date : 2024-10-27

Self Supervised Learning written by Robert Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-27 with Computers categories.


"Self-Supervised Learning: Teaching AI with Unlabeled Data" serves as a definitive guide to one of the most transformative developments in artificial intelligence. This book demystifies the self-supervised learning paradigm, introducing readers to its principles and methodologies, which enable models to leverage vast amounts of unlabeled data effectively. Through clear explanations, the book navigates the theoretical frameworks and core algorithms underpinning self-supervised learning, offering insight into how these techniques unlock unprecedented capabilities in AI systems. Across its chapters, the text examines practical applications in fields like natural language processing, computer vision, and robotics, showcasing the versatility of self-supervised approaches. Readers will gain an understanding of the challenges and ethical considerations associated with deploying these models while exploring the evaluation metrics essential to assessing their performance. With a forward-looking perspective, the book also highlights potential research opportunities and future directions, poised to shape the evolution of AI. Compelling and informative, this book is an indispensable resource for anyone eager to delve into the future of data-driven learning.



The Hundred Page Machine Learning Book


The Hundred Page Machine Learning Book
DOWNLOAD
Author : Andriy Burkov
language : en
Publisher:
Release Date : 2019

The Hundred Page Machine Learning Book written by Andriy Burkov and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Machine learning categories.


Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.



Graph Neural Networks Foundations Frontiers And Applications


Graph Neural Networks Foundations Frontiers And Applications
DOWNLOAD
Author : Lingfei Wu
language : en
Publisher: Springer Nature
Release Date : 2022-01-03

Graph Neural Networks Foundations Frontiers And Applications written by Lingfei Wu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-03 with Computers categories.


Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data, such as images or sequence data, and not immediately applicable to graph-structured data such as text. This gap has driven a wave of research for deep learning on graphs, including graph representation learning, graph generation, and graph classification. The new neural network architectures on graph-structured data (graph neural networks, GNNs in short) have performed remarkably on these tasks, demonstrated by applications in social networks, bioinformatics, and medical informatics. Despite these successes, GNNs still face many challenges ranging from the foundational methodologies to the theoretical understandings of the power of the graph representation learning. This book provides a comprehensive introduction of GNNs. It first discusses the goals of graph representation learning and then reviews the history, current developments, and future directions of GNNs. The second part presents and reviews fundamental methods and theories concerning GNNs while the third part describes various frontiers that are built on the GNNs. The book concludes with an overview of recent developments in a number of applications using GNNs. This book is suitable for a wide audience including undergraduate and graduate students, postdoctoral researchers, professors and lecturers, as well as industrial and government practitioners who are new to this area or who already have some basic background but want to learn more about advanced and promising techniques and applications.



Semi Supervised Learning


Semi Supervised Learning
DOWNLOAD
Author : Olivier Chapelle
language : en
Publisher: MIT Press
Release Date : 2010-01-22

Semi Supervised Learning written by Olivier Chapelle and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-22 with Computers categories.


A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.



Machine Learning For The Quantified Self


Machine Learning For The Quantified Self
DOWNLOAD
Author : Mark Hoogendoorn
language : en
Publisher: Springer
Release Date : 2017-09-28

Machine Learning For The Quantified Self written by Mark Hoogendoorn and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-28 with Technology & Engineering categories.


This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from from state-of-the-art scientific literature, it illustrates the approaches using a case study of a rich self-tracking data set. Self-tracking has become part of the modern lifestyle, and the amount of data generated by these devices is so overwhelming that it is difficult to obtain useful insights from it. Luckily, in the domain of artificial intelligence there are techniques that can help out: machine-learning approaches allow this type of data to be analyzed. While there are ample books that explain machine-learning techniques, self-tracking data comes with its own difficulties that require dedicated techniques such as learning over time and across users.



Machine Learning Q And Ai


Machine Learning Q And Ai
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: No Starch Press
Release Date : 2024-04-16

Machine Learning Q And Ai written by Sebastian Raschka and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-16 with Computers categories.


Learn the answers to 30 cutting-edge questions in machine learning and AI and level up your expertise in the field. If you’re ready to venture beyond introductory concepts and dig deeper into machine learning, deep learning, and AI, the question-and-answer format of Machine Learning Q and AI will make things fast and easy for you, without a lot of mucking about. Born out of questions often fielded by author Sebastian Raschka, the direct, no-nonsense approach of this book makes advanced topics more accessible and genuinely engaging. Each brief, self-contained chapter journeys through a fundamental question in AI, unraveling it with clear explanations, diagrams, and hands-on exercises. WHAT'S INSIDE: FOCUSED CHAPTERS: Key questions in AI are answered concisely, and complex ideas are broken down into easily digestible parts. WIDE RANGE OF TOPICS: Raschka covers topics ranging from neural network architectures and model evaluation to computer vision and natural language processing. PRACTICAL APPLICATIONS: Learn techniques for enhancing model performance, fine-tuning large models, and more. You’ll also explore how to: • Manage the various sources of randomness in neural network training • Differentiate between encoder and decoder architectures in large language models • Reduce overfitting through data and model modifications • Construct confidence intervals for classifiers and optimize models with limited labeled data • Choose between different multi-GPU training paradigms and different types of generative AI models • Understand performance metrics for natural language processing • Make sense of the inductive biases in vision transformers If you’ve been on the hunt for the perfect resource to elevate your understanding of machine learning, Machine Learning Q and AI will make it easy for you to painlessly advance your knowledge beyond the basics.



Lifelong Machine Learning


Lifelong Machine Learning
DOWNLOAD
Author : Zhiyuan Chen
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2018-08-14

Lifelong Machine Learning written by Zhiyuan Chen and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-14 with Computers categories.


Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.



Introduction To Semi Supervised Learning


Introduction To Semi Supervised Learning
DOWNLOAD
Author : Xiaojin Zhu
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Introduction To Semi Supervised Learning written by Xiaojin Zhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook



Principles Of Machine Learning


Principles Of Machine Learning
DOWNLOAD
Author : Wenmin Wang
language : en
Publisher: Springer Nature
Release Date : 2024-10-26

Principles Of Machine Learning written by Wenmin Wang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-26 with Mathematics categories.


Conducting an in-depth analysis of machine learning, this book proposes three perspectives for studying machine learning: the learning frameworks, learning paradigms, and learning tasks. With this categorization, the learning frameworks reside within the theoretical perspective, the learning paradigms pertain to the methodological perspective, and the learning tasks are situated within the problematic perspective. Throughout the book, a systematic explication of machine learning principles from these three perspectives is provided, interspersed with some examples. The book is structured into four parts, encompassing a total of fifteen chapters. The inaugural part, titled “Perspectives,” comprises two chapters: an introductory exposition and an exploration of the conceptual foundations. The second part, “Frameworks”: subdivided into five chapters, each dedicated to the discussion of five seminal frameworks: probability, statistics, connectionism, symbolism, and behaviorism. Continuing further, the third part, “Paradigms,” encompasses four chapters that explain the three paradigms of supervised learning, unsupervised learning, and reinforcement learning, and narrating several quasi-paradigms emerged in machine learning. Finally, the fourth part, “Tasks”: comprises four chapters, delving into the prevalent learning tasks of classification, regression, clustering, and dimensionality reduction. This book provides a multi-dimensional and systematic interpretation of machine learning, rendering it suitable as a textbook reference for senior undergraduates or graduate students pursuing studies in artificial intelligence, machine learning, data science, computer science, and related disciplines. Additionally, it serves as a valuable reference for those engaged in scientific research and technical endeavors within the realm of machine learning. The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.



Cohort Intelligence A Socio Inspired Optimization Method


Cohort Intelligence A Socio Inspired Optimization Method
DOWNLOAD
Author : Anand Jayant Kulkarni
language : en
Publisher: Springer
Release Date : 2016-09-22

Cohort Intelligence A Socio Inspired Optimization Method written by Anand Jayant Kulkarni and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-22 with Technology & Engineering categories.


This Volume discusses the underlying principles and analysis of the different concepts associated with an emerging socio-inspired optimization tool referred to as Cohort Intelligence (CI). CI algorithms have been coded in Matlab and are freely available from the link provided inside the book. The book demonstrates the ability of CI methodology for solving combinatorial problems such as Traveling Salesman Problem and Knapsack Problem in addition to real world applications from the healthcare, inventory, supply chain optimization and Cross-Border transportation. The inherent ability of handling constraints based on probability distribution is also revealed and proved using these problems.