Smooth Ergodic Theory For Endomorphisms

DOWNLOAD
Download Smooth Ergodic Theory For Endomorphisms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Smooth Ergodic Theory For Endomorphisms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Smooth Ergodic Theory For Endomorphisms
DOWNLOAD
Author : Min Qian
language : en
Publisher: Springer
Release Date : 2009-07-07
Smooth Ergodic Theory For Endomorphisms written by Min Qian and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-07 with Mathematics categories.
Ideal for researchers and graduate students, this volume sets out a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms. Its focus is on the relations between entropy, Lyapunov exponents and dimensions.
Smooth Ergodic Theory For Endomorphisms
DOWNLOAD
Author : Min Qian
language : en
Publisher:
Release Date : 2009
Smooth Ergodic Theory For Endomorphisms written by Min Qian and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Differentiable dynamical systems categories.
This volume presents a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms, mainly concerning the relations between entropy, Lyapunov exponents and dimensions. The authors make extensive use of the combination of the inverse limit space technique and the techniques developed to tackle random dynamical systems. The most interesting results in this book are (1) the equivalence between the SRB property and Pesin's entropy formula; (2) the generalized Ledrappier-Young entropy formula; (3) exact-dimensionality for weakly hyperbolic diffeomorphisms and for expanding maps. The proof of the exact-dimensionality for weakly hyperbolic diffeomorphisms seems more accessible than that of Barreira et al. It also inspires the authors to argue to what extent the famous Eckmann-Ruelle conjecture and many other classical results for diffeomorphisms and for flows hold true. After a careful reading of the book, one can systematically learn the Pesin theory for endomorphisms as well as the typical tricks played in the estimation of the number of balls of certain properties, which are extensively used in Chapters IX and X.
Smooth Ergodic Theory And Its Applications
DOWNLOAD
Author : A. B. Katok
language : en
Publisher: American Mathematical Soc.
Release Date : 2001
Smooth Ergodic Theory And Its Applications written by A. B. Katok and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leading experts in the field. This volume presents the proceedings of that conference. Smooth ergodic theory studies the statistical properties of differentiable dynamical systems, whose origin traces back to the seminal works of Poincare and later, many great mathematicians who made contributions to the development of the theory. The main topic of this volume, smooth ergodic theory, especially the theory of nonuniformly hyperbolic systems, provides the principle paradigm for the rigorous study of complicated or chaotic behavior in deterministic systems. This paradigm asserts that if a non-linear dynamical system exhibits sufficiently pronounced exponential behavior, then global properties of the system can be deduced from studying the linearized system. One can then obtain detailed information on topological properties (such as the growth of periodic orbits, topological entropy, and dimension of invariant sets including attractors), as well as statistical properties (such as the existence of invariant measures, asymptotic behavior of typical orbits, ergodicity, mixing, decay of corre This volume serves a two-fold purpose: first, it gives a useful gateway to smooth ergodic theory for students and nonspecialists, and second, it provides a state-of-the-art report on important current aspects of the subject. The book is divided into three parts: lecture notes consisting of three long expositions with proofs aimed to serve as a comprehensive and self-contained introduction to a particular area of smooth ergodic theory; thematic sections based on mini-courses or surveys held at the conference; and original contributions presented at the meeting or closely related to the topics that were discussed there.
Symmetries Of Compact Riemann Surfaces
DOWNLOAD
Author : Emilio Bujalance
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-10-06
Symmetries Of Compact Riemann Surfaces written by Emilio Bujalance and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-06 with Mathematics categories.
This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.
The Analysis Of Fractional Differential Equations
DOWNLOAD
Author : Kai Diethelm
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-03
The Analysis Of Fractional Differential Equations written by Kai Diethelm and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-03 with Mathematics categories.
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Morrey And Campanato Meet Besov Lizorkin And Triebel
DOWNLOAD
Author : Wen Yuan
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-18
Morrey And Campanato Meet Besov Lizorkin And Triebel written by Wen Yuan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-18 with Mathematics categories.
During the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the authors develop a unified framework for all of these spaces. As a byproduct, the authors provide a completion of the theory of Triebel-Lizorkin spaces when p = ∞.
Banach Spaces And Descriptive Set Theory Selected Topics
DOWNLOAD
Author : Pandelis Dodos
language : en
Publisher: Springer
Release Date : 2010-04-15
Banach Spaces And Descriptive Set Theory Selected Topics written by Pandelis Dodos and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-15 with Mathematics categories.
These notes are devoted to the study of some classical problems in the Geometry of Banach spaces. The novelty lies in the fact that their solution relies heavily on techniques coming from Descriptive Set Theory. Thecentralthemeisuniversalityproblems.Inparticular,thetextprovides an exposition of the methods developed recently in order to treat questions of the following type: (Q) LetC be a class of separable Banach spaces such that every space X in the classC has a certain property, say property (P). When can we ?nd a separable Banach space Y which has property (P) and contains an isomorphic copy of every member ofC? We will consider quite classical properties of Banach spaces, such as “- ing re?exive,” “having separable dual,” “not containing an isomorphic copy of c ,” “being non-universal,” etc. 0 It turns out that a positive answer to problem (Q), for any of the above mentioned properties, is possible if (and essentially only if) the classC is “simple.” The “simplicity” ofC is measured in set theoretic terms. Precisely, if the classC is analytic in a natural “coding” of separable Banach spaces, then we can indeed ?nd a separable space Y which is universal for the class C and satis?es the requirements imposed above.
Geometric Theory Of Discrete Nonautonomous Dynamical Systems
DOWNLOAD
Author : Christian Pötzsche
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-17
Geometric Theory Of Discrete Nonautonomous Dynamical Systems written by Christian Pötzsche and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-17 with Mathematics categories.
The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).
Ergodic Theory Finite And Infinite Thermodynamic Formalism Symbolic Dynamics And Distance Expanding Maps
DOWNLOAD
Author : Mariusz Urbański
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2021-11-22
Ergodic Theory Finite And Infinite Thermodynamic Formalism Symbolic Dynamics And Distance Expanding Maps written by Mariusz Urbański and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-22 with Mathematics categories.
The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen’s formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub’s expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.
Ergodic Theory
DOWNLOAD
Author : Cesar E. Silva
language : en
Publisher: Springer Nature
Release Date : 2023-07-31
Ergodic Theory written by Cesar E. Silva and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-31 with Mathematics categories.
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras