[PDF] Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach - eBooks Review

Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach


Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach
DOWNLOAD

Download Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Solutions Of Nonlinear Differential Equations


Solutions Of Nonlinear Differential Equations
DOWNLOAD
Author : Lin Li (Mathematics professor)
language : en
Publisher:
Release Date : 2016

Solutions Of Nonlinear Differential Equations written by Lin Li (Mathematics professor) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with MATHEMATICS categories.


Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.Contents:PrefaceSome Notations and ConventionsPreliminaries and Variational PrinciplesQuasilinear Fourth-Order ProblemsKirchhoff ProblemsNonlinear Field ProblemsGradient SystemsVariable Exponent ProblemsReadership: Graduate students and researchers interested in variational methods.Key Features:Each section contains supplementary comments and bibliographical notesThe style and the choice of the material make it accessible to all newcomers to the fieldThere is a rich bibliography and an index to aid the reader



Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach


Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach
DOWNLOAD
Author : Lin Li
language : en
Publisher: World Scientific
Release Date : 2016-04-15

Solutions Of Nonlinear Differential Equations Existence Results Via The Variational Approach written by Lin Li and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-15 with Mathematics categories.


Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.



Semilinear Elliptic Equations For Beginners


Semilinear Elliptic Equations For Beginners
DOWNLOAD
Author : Marino Badiale
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-12-07

Semilinear Elliptic Equations For Beginners written by Marino Badiale and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-07 with Mathematics categories.


Semilinear elliptic equations are of fundamental importance for the study of geometry, physics, mechanics, engineering and life sciences. The variational approach to these equations has experienced spectacular success in recent years, reaching a high level of complexity and refinement, with a multitude of applications. Additionally, some of the simplest variational methods are evolving as classical tools in the field of nonlinear differential equations. This book is an introduction to variational methods and their applications to semilinear elliptic problems. Providing a comprehensive overview on the subject, this book will support both student and teacher engaged in a first course in nonlinear elliptic equations. The material is introduced gradually, and in some cases redundancy is added to stress the fundamental steps in theory-building. Topics include differential calculus for functionals, linear theory, and existence theorems by minimization techniques and min-max procedures. Requiring a basic knowledge of Analysis, Functional Analysis and the most common function spaces, such as Lebesgue and Sobolev spaces, this book will be of primary use to graduate students based in the field of nonlinear partial differential equations. It will also serve as valuable reading for final year undergraduates seeking to learn about basic working tools from variational methods and the management of certain types of nonlinear problems.



Variational Methods


Variational Methods
DOWNLOAD
Author : Michael Struwe
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

Variational Methods written by Michael Struwe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Science categories.


Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field.



Nonlinear Analysis Differential Equations And Control


Nonlinear Analysis Differential Equations And Control
DOWNLOAD
Author : F.H. Clarke
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Nonlinear Analysis Differential Equations And Control written by F.H. Clarke and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Recent years have witnessed important developments in those areas of the mathematical sciences where the basic model under study is a dynamical system such as a differential equation or control process. Many of these recent advances were made possible by parallel developments in nonlinear and nonsmooth analysis. The latter subjects, in general terms, encompass differential analysis and optimization theory in the absence of traditional linearity, convexity or smoothness assumptions. In the last three decades it has become increasingly recognized that nonlinear and nonsmooth behavior is naturally present and prevalent in dynamical models, and is therefore significant theoretically. This point of view has guided us in the organizational aspects of this ASI. Our goals were twofold: We intended to achieve "cross fertilization" between mathematicians who were working in a diverse range of problem areas, but who all shared an interest in nonlinear and nonsmooth analysis. More importantly, it was our goal to expose a young international audience (mainly graduate students and recent Ph. D. 's) to these important subjects. In that regard, there were heavy pedagogical demands placed upon the twelve speakers of the ASI, in meeting the needs of such a gathering. The talks, while exposing current areas of research activity, were required to be as introductory and comprehensive as possible. It is our belief that these goals were achieved, and that these proceedings bear this out. Each of the twelve speakers presented a mini-course of four or five hours duration.



A Variational Approach To Nonsmooth Dynamics


A Variational Approach To Nonsmooth Dynamics
DOWNLOAD
Author : Samir Adly
language : en
Publisher: Springer
Release Date : 2018-02-19

A Variational Approach To Nonsmooth Dynamics written by Samir Adly and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-19 with Mathematics categories.


This brief examines mathematical models in nonsmooth mechanics and nonregular electrical circuits, including evolution variational inequalities, complementarity systems, differential inclusions, second-order dynamics, Lur'e systems and Moreau's sweeping process. The field of nonsmooth dynamics is of great interest to mathematicians, mechanicians, automatic controllers and engineers. The present volume acknowledges this transversality and provides a multidisciplinary view as it outlines fundamental results in nonsmooth dynamics and explains how to use them to study various problems in engineering. In particular, the author explores the question of how to redefine the notion of dynamical systems in light of modern variational and nonsmooth analysis. With the aim of bridging between the communities of applied mathematicians, engineers and researchers in control theory and nonlinear systems, this brief outlines both relevant mathematical proofs and models in unilateral mechanics and electronics.



Ordinary Differential Equations And Boundary Value Problems Volume I Advanced Ordinary Differential Equations


Ordinary Differential Equations And Boundary Value Problems Volume I Advanced Ordinary Differential Equations
DOWNLOAD
Author : John R Graef
language : en
Publisher: World Scientific
Release Date : 2018-02-13

Ordinary Differential Equations And Boundary Value Problems Volume I Advanced Ordinary Differential Equations written by John R Graef and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-13 with Mathematics categories.


The authors give a treatment of the theory of ordinary differential equations (ODEs) that is excellent for a first course at the graduate level as well as for individual study. The reader will find it to be a captivating introduction with a number of non-routine exercises dispersed throughout the book.The authors begin with a study of initial value problems for systems of differential equations including the Picard and Peano existence theorems. The continuability of solutions, their continuous dependence on initial conditions, and their continuous dependence with respect to parameters are presented in detail. This is followed by a discussion of the differentiability of solutions with respect to initial conditions and with respect to parameters. Comparison results and differential inequalities are included as well.Linear systems of differential equations are treated in detail as is appropriate for a study of ODEs at this level. Just the right amount of basic properties of matrices are introduced to facilitate the observation of matrix systems and especially those with constant coefficients. Floquet theory for linear periodic systems is presented and used to analyze nonhomogeneous linear systems.Stability theory of first order and vector linear systems are considered. The relationships between stability of solutions, uniform stability, asymptotic stability, uniformly asymptotic stability, and strong stability are examined and illustrated with examples as is the stability of vector linear systems. The book concludes with a chapter on perturbed systems of ODEs.



Multiple Solutions Of Boundary Value Problems A Variational Approach


Multiple Solutions Of Boundary Value Problems A Variational Approach
DOWNLOAD
Author : John R Graef
language : en
Publisher: World Scientific
Release Date : 2015-08-26

Multiple Solutions Of Boundary Value Problems A Variational Approach written by John R Graef and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-26 with Mathematics categories.


Variational methods and their generalizations have been verified to be useful tools in proving the existence of solutions to a variety of boundary value problems for ordinary, impulsive, and partial differential equations as well as for difference equations. In this monograph, we look at how variational methods can be used in all these settings. In our first chapter, we gather the basic notions and fundamental theorems that will be applied in the remainder of this monograph. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with the Sturm-Liouville problems, multi-point boundary value problems, problems with impulses, partial differential equations, and difference equations. An extensive bibliography is also included.



Topological And Variational Methods With Applications To Nonlinear Boundary Value Problems


Topological And Variational Methods With Applications To Nonlinear Boundary Value Problems
DOWNLOAD
Author : Dumitru Motreanu
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-19

Topological And Variational Methods With Applications To Nonlinear Boundary Value Problems written by Dumitru Motreanu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-19 with Mathematics categories.


This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.



Qualitative Analysis Of Nonlinear Elliptic Partial Differential Equations


Qualitative Analysis Of Nonlinear Elliptic Partial Differential Equations
DOWNLOAD
Author : Vicenţiu Rǎdulescu
language : en
Publisher: Hindawi Publishing Corporation
Release Date : 2008

Qualitative Analysis Of Nonlinear Elliptic Partial Differential Equations written by Vicenţiu Rǎdulescu and has been published by Hindawi Publishing Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Differential equations, Elliptic categories.


This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.