Spatial Big Data Science

DOWNLOAD
Download Spatial Big Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spatial Big Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Spatial Big Data Science
DOWNLOAD
Author : Zhe Jiang
language : en
Publisher: Springer
Release Date : 2017-07-13
Spatial Big Data Science written by Zhe Jiang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-13 with Computers categories.
Emerging Spatial Big Data (SBD) has transformative potential in solving many grand societal challenges such as water resource management, food security, disaster response, and transportation. However, significant computational challenges exist in analyzing SBD due to the unique spatial characteristics including spatial autocorrelation, anisotropy, heterogeneity, multiple scales and resolutions which is illustrated in this book. This book also discusses current techniques for, spatial big data science with a particular focus on classification techniques for earth observation imagery big data. Specifically, the authors introduce several recent spatial classification techniques, such as spatial decision trees and spatial ensemble learning. Several potential future research directions are also discussed. This book targets an interdisciplinary audience including computer scientists, practitioners and researchers working in the field of data mining, big data, as well as domain scientists working in earth science (e.g., hydrology, disaster), public safety and public health. Advanced level students in computer science will also find this book useful as a reference.
Geographical Data Science And Spatial Data Analysis
DOWNLOAD
Author : Lex Comber
language : en
Publisher: SAGE
Release Date : 2020-12-02
Geographical Data Science And Spatial Data Analysis written by Lex Comber and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-02 with Science categories.
We are in an age of big data where all of our everyday interactions and transactions generate data. Much of this data is spatial – it is collected some-where – and identifying analytical insight from trends and patterns in these increasing rich digital footprints presents a number of challenges. Whilst other books describe different flavours of Data Analytics in R and other programming languages, there are none that consider Spatial Data (i.e. the location attached to data), or that consider issues of inference, linking Big Data, Geography, GIS, Mapping and Spatial Analytics. This is a ‘learning by doing’ textbook, building on the previous book by the same authors, An Introduction to R for Spatial Analysis and Mapping. It details the theoretical issues in analyses of Big Spatial Data and developing practical skills in the reader for addressing these with confidence.
Big Data Analytics In Earth Atmospheric And Ocean Sciences
DOWNLOAD
Author : Thomas Huang
language : en
Publisher: John Wiley & Sons
Release Date : 2022-11-08
Big Data Analytics In Earth Atmospheric And Ocean Sciences written by Thomas Huang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-08 with Science categories.
Applying tools for data analysis to the rapidly increasing volume of data about the Earth An ever-increasing volume of Earth data is being gathered. These data are “big” not only in size but also in their complexity, different formats, and varied scientific disciplines. As such, big data are disrupting traditional research. New methods and platforms, such as the cloud, are tackling these new challenges. Big Data Analytics in Earth, Atmospheric, and Ocean Sciences explores new tools for the analysis and display of the rapidly increasing volume of data about the Earth. Volume highlights include: An introduction to the breadth of big earth data analytics Architectures developed to support big earth data analytics Different analysis and statistical methods for big earth data Current applications of analytics to Earth science data Challenges to fully implementing big data analytics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more in this Q&A with the editors.
Spatial Data Mining
DOWNLOAD
Author : Deren Li
language : en
Publisher: Springer
Release Date : 2016-03-23
Spatial Data Mining written by Deren Li and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-23 with Computers categories.
· This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.
Spatial Computing
DOWNLOAD
Author : Shashi Shekhar
language : en
Publisher: MIT Press
Release Date : 2020-02-18
Spatial Computing written by Shashi Shekhar and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-18 with Computers categories.
An accessible guide to the ideas and technologies underlying such applications as GPS, Google Maps, Pokémon Go, ride-sharing, driverless cars, and drone surveillance. Billions of people around the globe use various applications of spatial computing daily—by using a ride-sharing app, GPS, the e911 system, social media check-ins, even Pokémon Go. Scientists and researchers use spatial computing to track diseases, map the bottom of the oceans, chart the behavior of endangered species, and create election maps in real time. Drones and driverless cars use a variety of spatial computing technologies. Spatial computing works by understanding the physical world, knowing and communicating our relation to places in that world, and navigating through those places. It has changed our lives and infrastructures profoundly, marking a significant shift in how we make our way in the world. This volume in the MIT Essential Knowledge series explains the technologies and ideas behind spatial computing. The book offers accessible descriptions of GPS and location-based services, including the use of Wi-Fi, Bluetooth, and RFID for position determination out of satellite range; remote sensing, which uses satellite and aerial platforms to monitor such varied phenomena as global food production, the effects of climate change, and subsurface natural resources on other planets; geographic information systems (GIS), which store, analyze, and visualize spatial data; spatial databases, which store multiple forms of spatial data; and spatial statistics and spatial data science, used to analyze location-related data.
Spatial Analysis With R
DOWNLOAD
Author : Tonny J. Oyana
language : en
Publisher: CRC Press
Release Date : 2023-09-25
Spatial Analysis With R written by Tonny J. Oyana and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-25 with categories.
This second edition provides a balance between concepts and practicums of spatial statistics with a comprehensive coverage of the most important approaches to understand spatial data, analyze spatial relationships and patterns, and predict spatial processes. It includes the implementation of new tools for spatial analysis using R.
Statistics New Empiricism And Society In The Era Of Big Data
DOWNLOAD
Author : Giuseppe Arbia
language : en
Publisher:
Release Date : 2021
Statistics New Empiricism And Society In The Era Of Big Data written by Giuseppe Arbia and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
This book reveals the myriad aspects of Big Data collection and analysis, by defining and clarifying the meaning of Big Data and its unique characteristics in a non-technical and easy-to-follow way. Moreover, it discusses critical issues and problems related to the Big Data revolution and their implications for both Statistics as a discipline and for our everyday lives. The author identifies various problems and limitations in the quantitative analysis of Big Data, with regard to e.g. its volume, velocity and variety, as well as its reliability and veridicity. Dedicated chapters focus on the epistemological aspects of data-based knowledge and ethical aspects of the use of Big Data, while also addressing paradigmatic cases such as Cambridge Analytica and the use of data from social networks to influence election outcomes.
An Introduction To R For Spatial Analysis And Mapping
DOWNLOAD
Author : Chris Brunsdon
language : en
Publisher: SAGE
Release Date : 2014-04-30
An Introduction To R For Spatial Analysis And Mapping written by Chris Brunsdon and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-30 with Social Science categories.
"In an age of big data, data journalism and with a wealth of quantitative information around us, it is not enough for students to be taught only 100 year old statistical methods using ′out of the box′ software. They need to have 21st-century analytical skills too. This is an excellent and student-friendly text from two of the world leaders in the teaching and development of spatial analysis. It shows clearly why the open source software R is not just an alternative to commercial GIS, it may actually be the better choice for mapping, analysis and for replicable research. Providing practical tips as well as fully working code, this is a practical ′how to′ guide ideal for undergraduates as well as those using R for the first time. It will be required reading on my own courses." - Richard Harris, Professor of Quantitative Social Science, University of Bristol R is a powerful open source computing tool that supports geographical analysis and mapping for the many geography and ‘non-geography’ students and researchers interested in spatial analysis and mapping. This book provides an introduction to the use of R for spatial statistical analysis, geocomputation and the analysis of geographical information for researchers collecting and using data with location attached, largely through increased GPS functionality. Brunsdon and Comber take readers from ‘zero to hero’ in spatial analysis and mapping through functions they have developed and compiled into R packages. This enables practical R applications in GIS, spatial analyses, spatial statistics, mapping, and web-scraping. Each chapter includes: Example data and commands for exploring it Scripts and coding to exemplify specific functionality Advice for developing greater understanding - through functions such as locator(), View(), and alternative coding to achieve the same ends Self-contained exercises for students to work through Embedded code within the descriptive text. This is a definitive ′how to′ that takes students - of any discipline - from coding to actual applications and uses of R.
Geospatial Data Science Quick Start Guide
DOWNLOAD
Author : Abdishakur Hassan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-31
Geospatial Data Science Quick Start Guide written by Abdishakur Hassan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-31 with Computers categories.
Discover the power of location data to build effective, intelligent data models with Geospatial ecosystems Key FeaturesManipulate location-based data and create intelligent geospatial data modelsBuild effective location recommendation systems used by popular companies such as UberA hands-on guide to help you consume spatial data and parallelize GIS operations effectivelyBook Description Data scientists, who have access to vast data streams, are a bit myopic when it comes to intrinsic and extrinsic location-based data and are missing out on the intelligence it can provide to their models. This book demonstrates effective techniques for using the power of data science and geospatial intelligence to build effective, intelligent data models that make use of location-based data to give useful predictions and analyses. This book begins with a quick overview of the fundamentals of location-based data and how techniques such as Exploratory Data Analysis can be applied to it. We then delve into spatial operations such as computing distances, areas, extents, centroids, buffer polygons, intersecting geometries, geocoding, and more, which adds additional context to location data. Moving ahead, you will learn how to quickly build and deploy a geo-fencing system using Python. Lastly, you will learn how to leverage geospatial analysis techniques in popular recommendation systems such as collaborative filtering and location-based recommendations, and more. By the end of the book, you will be a rockstar when it comes to performing geospatial analysis with ease. What you will learnLearn how companies now use location dataSet up your Python environment and install Python geospatial packagesVisualize spatial data as graphsExtract geometry from spatial dataPerform spatial regression from scratchBuild web applications which dynamically references geospatial dataWho this book is for Data Scientists who would like to leverage location-based data and want to use location-based intelligence in their data models will find this book useful. This book is also for GIS developers who wish to incorporate data analysis in their projects. Knowledge of Python programming and some basic understanding of data analysis are all you need to get the most out of this book.
Remote Sensing Big Data
DOWNLOAD
Author : Liping Di
language : en
Publisher: Springer Nature
Release Date : 2023-07-24
Remote Sensing Big Data written by Liping Di and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-24 with Technology & Engineering categories.
This monograph provides comprehensive coverage of the collection, management, and use of big data obtained from remote sensing. The book begins with an introduction to the basics of big data and remote sensing, laying the groundwork for the more specialized information to follow. The volume then goes on to address a wide variety of topics related to the use and management of remote sensing big data, including hot topics such as analysis through machine learning, cyberinfrastructure, and modeling. Examples on how to use the results of big data analysis of remotely sensed data for concrete decision-making are offered as well. The closing chapters discuss geospatial big data initiatives throughout the world and future challenges and opportunities for remote sensing big data applications. The audience for this book includes researchers at the intersection of geoscience and data science, senior undergraduate and graduate students, and anyone else interested in how large datasets obtained through remote sensing can be best utilized. The book presents a culmination of 30 years of research from renowned spatial scientists Drs. Liping Di and Eugene Yu.