[PDF] Statistical Learning From A Regression Perspective - eBooks Review

Statistical Learning From A Regression Perspective


Statistical Learning From A Regression Perspective
DOWNLOAD

Download Statistical Learning From A Regression Perspective PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Learning From A Regression Perspective book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical Learning From A Regression Perspective


Statistical Learning From A Regression Perspective
DOWNLOAD
Author : Richard A. Berk
language : en
Publisher: Springer Nature
Release Date : 2020-06-29

Statistical Learning From A Regression Perspective written by Richard A. Berk and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Mathematics categories.


This textbook considers statistical learning applications when interest centers on the conditional distribution of a response variable, given a set of predictors, and in the absence of a credible model that can be specified before the data analysis begins. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis depends in an integrated fashion on sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. The unifying theme is that supervised learning properly can be seen as a form of regression analysis. Key concepts and procedures are illustrated with a large number of real applications and their associated code in R, with an eye toward practical implications. The growing integration of computer science and statistics is well represented including the occasional, but salient, tensions that result. Throughout, there are links to the big picture. The third edition considers significant advances in recent years, among which are: the development of overarching, conceptual frameworks for statistical learning; the impact of “big data” on statistical learning; the nature and consequences of post-model selection statistical inference; deep learning in various forms; the special challenges to statistical inference posed by statistical learning; the fundamental connections between data collection and data analysis; interdisciplinary ethical and political issues surrounding the application of algorithmic methods in a wide variety of fields, each linked to concerns about transparency, fairness, and accuracy. This edition features new sections on accuracy, transparency, and fairness, as well as a new chapter on deep learning. Precursors to deep learning get an expanded treatment. The connections between fitting and forecasting are considered in greater depth. Discussion of the estimation targets for algorithmic methods is revised and expanded throughout to reflect the latest research. Resampling procedures are emphasized. The material is written for upper undergraduate and graduate students in the social, psychological and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems.



Statistical Learning From A Regression Perspective


Statistical Learning From A Regression Perspective
DOWNLOAD
Author : Richard A. Berk
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-06-14

Statistical Learning From A Regression Perspective written by Richard A. Berk and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-14 with Mathematics categories.


Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this is can be seen as an extension of nonparametric regression. Among the statistical learning procedures examined are bagging, random forests, boosting, and support vector machines. Response variables may be quantitative or categorical. Real applications are emphasized, especially those with practical implications. One important theme is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Another important theme is to not automatically cede modeling decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important theme is to appreciate the limitation of one’s data and not apply statistical learning procedures that require more than the data can provide. The material is written for graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. Intuitive explanations and visual representations are prominent. All of the analyses included are done in R.



Statistical Learning From A Regression Perspective Third Edition


Statistical Learning From A Regression Perspective Third Edition
DOWNLOAD
Author : Richard A. Berk
language : en
Publisher:
Release Date : 2024

Statistical Learning From A Regression Perspective Third Edition written by Richard A. Berk and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Regression analysis categories.




Statistical Learning From A Regression Perspective


Statistical Learning From A Regression Perspective
DOWNLOAD
Author : Jack Noah
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-06-07

Statistical Learning From A Regression Perspective written by Jack Noah and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-07 with categories.


This textbook considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. This fully revised new edition includes important developments over the past 8 years. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis derives from sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. As in the first edition, a unifying theme is supervised learning that can be treated as a form of regression analysis. Key concepts and procedures are illustrated with real applications, especially those with practical implications. The material is written for upper undergraduate level and graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. The author uses this book in a course on modern regression for the social, behavioral, and biological sciences. All of the analyses included are done in R with code routinely provided.



Handbook Of Quantitative Criminology


Handbook Of Quantitative Criminology
DOWNLOAD
Author : Alex R. Piquero
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-12-16

Handbook Of Quantitative Criminology written by Alex R. Piquero and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-16 with Social Science categories.


Quantitative criminology has certainly come a long way since I was ?rst introduced to a largely qualitative criminology some 40 years ago, when I was recruited to lead a task force on science and technology for the President’s Commission on Law Enforcement and Administration of Justice. At that time, criminology was a very limited activity, depending almost exclusively on the Uniform Crime Reports (UCR) initiated by the FBI in 1929 for measurement of crime based on victim reports to the police and on police arrests. A ty- cal mode of analysis was simple bivariate correlation. Marvin Wolfgang and colleagues were makingan importantadvancebytrackinglongitudinaldata onarrestsin Philadelphia,an in- vation that was widely appreciated. And the ?eld was very small: I remember attending my ?rst meeting of the American Society of Criminology in about 1968 in an anteroom at New York University; there were about 25–30 people in attendance, mostly sociologists with a few lawyers thrown in. That Society today has over 3,000 members, mostly now drawn from criminology which has established its own clear identity, but augmented by a wide variety of disciplines that include statisticians, economists, demographers, and even a few engineers. This Handbook provides a remarkable testimony to the growth of that ?eld. Following the maxim that “if you can’t measure it, you can’t understand it,” we have seen the early dissatisfaction with the UCR replaced by a wide variety of new approaches to measuring crime victimization and offending.



Unsupervised Process Monitoring And Fault Diagnosis With Machine Learning Methods


Unsupervised Process Monitoring And Fault Diagnosis With Machine Learning Methods
DOWNLOAD
Author : Chris Aldrich
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-15

Unsupervised Process Monitoring And Fault Diagnosis With Machine Learning Methods written by Chris Aldrich and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-15 with Computers categories.


This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.



Machine Learning Risk Assessments In Criminal Justice Settings


Machine Learning Risk Assessments In Criminal Justice Settings
DOWNLOAD
Author : Richard Berk
language : en
Publisher: Springer
Release Date : 2018-12-13

Machine Learning Risk Assessments In Criminal Justice Settings written by Richard Berk and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-13 with Computers categories.


This book puts in one place and in accessible form Richard Berk’s most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk. Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than “predictive policing” for locations in time and space, which is a very different enterprise that uses different data different data analysis tools. The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.



Tree Based Methods For Statistical Learning In R


Tree Based Methods For Statistical Learning In R
DOWNLOAD
Author : Brandon M. Greenwell
language : en
Publisher: CRC Press
Release Date : 2022-06-23

Tree Based Methods For Statistical Learning In R written by Brandon M. Greenwell and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-23 with Business & Economics categories.


Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology. The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, users will be exposed to writing their own random forest and gradient tree boosting functions using simple for loops and basic tree fitting software (like rpart and party/partykit), and more. The core chapters also end with a detailed section on relevant software in both R and other opensource alternatives (e.g., Python, Spark, and Julia), and example usage on real data sets. While the book mostly uses R, it is meant to be equally accessible and useful to non-R programmers. Consumers of this book will have gained a solid foundation (and appreciation) for tree-based methods and how they can be used to solve practical problems and challenges data scientists often face in applied work. Features: Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests). A companion website containing additional supplementary material and the code to reproduce every example and figure in the book. A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., there’s an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree). Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance.



Statistical Learning For Biomedical Data


Statistical Learning For Biomedical Data
DOWNLOAD
Author : James D. Malley
language : en
Publisher: Cambridge University Press
Release Date : 2011-02-24

Statistical Learning For Biomedical Data written by James D. Malley and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-24 with Medical categories.


This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random ForestsTM, neural nets, support vector machines, nearest neighbors and boosting.



Machine Learning For Social And Behavioral Research


Machine Learning For Social And Behavioral Research
DOWNLOAD
Author : Ross Jacobucci
language : en
Publisher: Guilford Publications
Release Date : 2023-07-17

Machine Learning For Social And Behavioral Research written by Ross Jacobucci and has been published by Guilford Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-17 with Business & Economics categories.


Today's social and behavioral researchers increasingly need to know: "What do I do with all this data?" This book provides the skills needed to analyze and report large, complex data sets using machine learning tools, and to understand published machine learning articles. Techniques are demonstrated using actual data (Big 5 Inventory, early childhood learning, and more), with a focus on the interplay of statistical algorithm, data, and theory. The identification of heterogeneity, measurement error, regularization, and decision trees are also emphasized. The book covers basic principles as well as a range of methods for analyzing univariate and multivariate data (factor analysis, structural equation models, and mixed-effects-models). Analysis of text and social network data is also addressed. End-of-chapter "Computational Time and Resources" sections include discussions of key R packages; the companion website provides R programming scripts and data for the book's examples.