[PDF] Statistical Models And Methods For Data Science - eBooks Review

Statistical Models And Methods For Data Science


Statistical Models And Methods For Data Science
DOWNLOAD

Download Statistical Models And Methods For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Models And Methods For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical Foundations Of Data Science


Statistical Foundations Of Data Science
DOWNLOAD
Author : Jianqing Fan
language : en
Publisher: CRC Press
Release Date : 2020-09-21

Statistical Foundations Of Data Science written by Jianqing Fan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-21 with Mathematics categories.


Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.



Advanced Statistical Methods In Data Science


Advanced Statistical Methods In Data Science
DOWNLOAD
Author : Ding-Geng Chen
language : en
Publisher: Springer
Release Date : 2016-11-30

Advanced Statistical Methods In Data Science written by Ding-Geng Chen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-30 with Mathematics categories.


This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a full chapter for this book in order to disseminate the findings and promote further research collaborations in this area. This timely book offers new methods that impact advanced statistical model development in big-data sciences.



Introduction To Statistical And Machine Learning Methods For Data Science


Introduction To Statistical And Machine Learning Methods For Data Science
DOWNLOAD
Author : Carlos Andre Reis Pinheiro
language : en
Publisher: SAS Institute
Release Date : 2021-08-06

Introduction To Statistical And Machine Learning Methods For Data Science written by Carlos Andre Reis Pinheiro and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-06 with Computers categories.


Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.



Statistical Models And Methods For Data Science


Statistical Models And Methods For Data Science
DOWNLOAD
Author : Leonardo Grilli
language : en
Publisher: Springer Nature
Release Date : 2023-07-24

Statistical Models And Methods For Data Science written by Leonardo Grilli and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-24 with Computers categories.


This book focuses on methods and models in classification and data analysis and presents real-world applications at the interface with data science. Numerous topics are covered, ranging from statistical inference and modelling to clustering and factorial methods, and from directional data analysis to time series analysis and small area estimation. The applications deal with new developments in a variety of fields, including medicine, finance, engineering, marketing, and cyber risk. The contents comprise selected and peer-reviewed contributions presented at the 13th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society, CLADAG 2021, held (online) in Florence, Italy, on September 9–11, 2021. CLADAG promotes advanced methodological research in multivariate statistics with a special focus on data analysis and classification, and supports the exchange and dissemination of ideas, methodological concepts, numerical methods, algorithms, and computational and applied results at the interface between classification and data science.



Statistical Analysis Of Network Data


Statistical Analysis Of Network Data
DOWNLOAD
Author : Eric D. Kolaczyk
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-20

Statistical Analysis Of Network Data written by Eric D. Kolaczyk and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-20 with Computers categories.


In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.



Hypothesis Testing


Hypothesis Testing
DOWNLOAD
Author : Jim Frost
language : en
Publisher:
Release Date : 2024-10-18

Hypothesis Testing written by Jim Frost and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-18 with Education categories.


In today's data-driven world, you hear about making decisions based on data all the time. Hypothesis testing plays a crucial role in that process for academia, business, or data science. Without hypothesis tests, you risk bad decisions.



An Introduction To Statistical Learning


An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30

An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.



Statistical Methods For Categorical Data Analysis


Statistical Methods For Categorical Data Analysis
DOWNLOAD
Author : Daniel Powers
language : en
Publisher: Emerald Group Publishing
Release Date : 2008-11-13

Statistical Methods For Categorical Data Analysis written by Daniel Powers and has been published by Emerald Group Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-13 with Psychology categories.


This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/



Statistical Methods For The Social And Behavioural Sciences


Statistical Methods For The Social And Behavioural Sciences
DOWNLOAD
Author : David B. Flora
language : en
Publisher: SAGE
Release Date : 2017-12-11

Statistical Methods For The Social And Behavioural Sciences written by David B. Flora and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-11 with Social Science categories.


Statistical methods in modern research increasingly entail developing, estimating and testing models for data. Rather than rigid methods of data analysis, the need today is for more flexible methods for modelling data. In this logical, easy-to-follow and exceptionally clear book, David Flora provides a comprehensive survey of the major statistical procedures currently used. His innovative model-based approach teaches you how to: Understand and choose the right statistical model to fit your data Match substantive theory and statistical models Apply statistical procedures hands-on, with example data analyses Develop and use graphs to understand data and fit models to data Work with statistical modeling principles using any software package Learn by applying, with input and output files for R, SAS, SPSS, and Mplus. Statistical Methods for the Social and Behavioural Sciences: A Model Based Approach is the essential guide for those looking to extend their understanding of the principles of statistics, and begin using the right statistical modeling method for their own data. It is particularly suited to second or advanced courses in statistical methods across the social and behavioural sciences.



Statistical Modeling For Degradation Data


Statistical Modeling For Degradation Data
DOWNLOAD
Author : Ding-Geng (Din) Chen
language : en
Publisher: Springer
Release Date : 2017-08-31

Statistical Modeling For Degradation Data written by Ding-Geng (Din) Chen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-31 with Mathematics categories.


This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.