Statistical Regression Modeling With R

DOWNLOAD
Download Statistical Regression Modeling With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Regression Modeling With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistical Regression Modeling With R
DOWNLOAD
Author : Ding-Geng (Din) Chen
language : en
Publisher: Springer Nature
Release Date : 2021-04-08
Statistical Regression Modeling With R written by Ding-Geng (Din) Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-08 with Mathematics categories.
This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.
Nonlinear Regression With R
DOWNLOAD
Author : Christian Ritz
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-11
Nonlinear Regression With R written by Christian Ritz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-11 with Mathematics categories.
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. Currently, R offers a wide range of functionality for nonlinear regression analysis, but the relevant functions, packages and documentation are scattered across the R environment. This book provides a coherent and unified treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology. R. Subsequent chapters explain the salient features of the main fitting function nls (), the use of model diagnostics, how to deal with various model departures, and carry out hypothesis testing. In the final chapter grouped-data structures, including an example of a nonlinear mixed-effects regression model, are considered.
Scientific Data Analysis With R
DOWNLOAD
Author : Azizur Rahman
language : en
Publisher: CRC Press
Release Date : 2024-11-28
Scientific Data Analysis With R written by Azizur Rahman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-28 with Mathematics categories.
In an era marked by exponential growth in data generation and an unprecedented convergence of technology and healthcare, the intersection of biostatistics and data science has become a pivotal domain. This book is the ideal companion in navigating the convergence of statistical methodologies and data science techniques with diverse applications implemented in the open-source environment of R. It is designed to be a comprehensive guide, marrying the principles of biostatistics with the practical implementation of statistics and data science in R, thereby empowering learners, researchers, and practitioners with the tools necessary to extract meaningful knowledge from biological, health, and medical datasets. This book is intended for students, researchers, and professionals eager to harness the combined power of biostatistics, data science, and the R programming language while gathering vital statistical knowledge needed for cutting-edge scientists in all fields. It is useful for those seeking to understand the basics of data science and statistical analysis, or looking to enhance their skills in handling any simple or complex data including biological, health, medical, and industry data. Key Features: Presents contemporary concepts of data science and biostatistics with real-life data analysis examples Promotes the evolution of fundamental and advanced methods applying to real-life problem-solving cases Explores computational statistical data science techniques from initial conception to recent developments of biostatistics Provides all R codes and real-world datasets to practice and competently apply into reader’s own domains Written in an exclusive state-of-the-art deductive approach without any theoretical hitches to support all contemporary readers
Extending The Linear Model With R
DOWNLOAD
Author : Julian J. Faraway
language : en
Publisher: CRC Press
Release Date : 2016-02-10
Extending The Linear Model With R written by Julian J. Faraway and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-10 with Mathematics categories.
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.
Graphics For Statistics And Data Analysis With R
DOWNLOAD
Author : Kevin J. Keen
language : en
Publisher: CRC Press
Release Date : 2018-09-26
Graphics For Statistics And Data Analysis With R written by Kevin J. Keen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-26 with Mathematics categories.
Praise for the First Edition "The main strength of this book is that it provides a unified framework of graphical tools for data analysis, especially for univariate and low-dimensional multivariate data. In addition, it is clearly written in plain language and the inclusion of R code is particularly useful to assist readers’ understanding of the graphical techniques discussed in the book. ... It not only summarises graphical techniques, but it also serves as a practical reference for researchers and graduate students with an interest in data display." -Han Lin Shang, Journal of Applied Statistics Graphics for Statistics and Data Analysis with R, Second Edition, presents the basic principles of graphical design and applies these principles to engaging examples using the graphics and lattice packages in R. It offers a wide array of modern graphical displays for data visualization and representation. Added in the second edition are coverage of the ggplot2 graphics package, material on human visualization and color rendering in R, on screen, and in print. Features Emphasizes the fundamentals of statistical graphics and best practice guidelines for producing and choosing among graphical displays in R Presents technical details on topics such as: the estimation of quantiles, nonparametric and parametric density estimation; diagnostic plots for the simple linear regression model; polynomial regression, splines, and locally weighted polynomial regression for producing a smooth curve; Trellis graphics for multivariate data Provides downloadable R code and data for figures at www.graphicsforstatistics.com Kevin J. Keen is a Professor of Mathematics and Statistics at the University of Northern British Columbia (Prince George, Canada) and an Accredited Professional StatisticianTM by the Statistical Society of Canada and the American Statistical Association.
An Introduction To Generalized Linear Models
DOWNLOAD
Author : Annette J. Dobson
language : en
Publisher: CRC Press
Release Date : 2018-04-17
An Introduction To Generalized Linear Models written by Annette J. Dobson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-17 with Mathematics categories.
An Introduction to Generalized Linear Models, Fourth Edition provides a cohesive framework for statistical modelling, with an emphasis on numerical and graphical methods. This new edition of a bestseller has been updated with new sections on non-linear associations, strategies for model selection, and a Postface on good statistical practice. Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers Normal, Poisson, and Binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods. Introduces GLMs in a way that enables readers to understand the unifying structure that underpins them Discusses common concepts and principles of advanced GLMs, including nominal and ordinal regression, survival analysis, non-linear associations and longitudinal analysis Connects Bayesian analysis and MCMC methods to fit GLMs Contains numerous examples from business, medicine, engineering, and the social sciences Provides the example code for R, Stata, and WinBUGS to encourage implementation of the methods Offers the data sets and solutions to the exercises online Describes the components of good statistical practice to improve scientific validity and reproducibility of results. Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons.
Linear Models With R
DOWNLOAD
Author : Julian J. Faraway
language : en
Publisher: CRC Press
Release Date : 2016-04-19
Linear Models With R written by Julian J. Faraway and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models
Using The R Commander
DOWNLOAD
Author : John Fox
language : en
Publisher: CRC Press
Release Date : 2016-09-15
Using The R Commander written by John Fox and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-15 with Mathematics categories.
This book provides a general introduction to the R Commander graphical user interface (GUI) to R for readers who are unfamiliar with R. It is suitable for use as a supplementary text in a basic or intermediate-level statistics course. It is not intended to replace a basic or other statistics text but rather to complement it, although it does promote sound statistical practice in the examples. The book should also be useful to individual casual or occasional users of R for whom the standard command-line interface is an obstacle.
Probability And Statistics For Engineering And The Sciences With Modeling Using R
DOWNLOAD
Author : William P. Fox
language : en
Publisher: CRC Press
Release Date : 2022-12-29
Probability And Statistics For Engineering And The Sciences With Modeling Using R written by William P. Fox and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-29 with Mathematics categories.
Probability and statistics courses are more popular than ever. Regardless of your major or your profession, you will most likely use concepts from probability and statistics often in your career. The primary goal behind this book is offering the flexibility for instructors to build most undergraduate courses upon it. This book is designed for either a one-semester course in either introductory probability and statistics (not calculus-based) and/or a one-semester course in a calculus-based probability and statistics course. The book focuses on engineering examples and applications, while also including social sciences and more examples. Depending on the chapter flows, a course can be tailored for students at all levels and background. Over many years of teaching this course, the authors created problems based on real data, student projects, and labs. Students have suggested these enhance their experience and learning. The authors hope to share projects and labs with other instructors and students to make the course more interesting for both. R is an excellent platform to use. This book uses R with real data sets. The labs can be used for group work, in class, or for self-directed study. These project labs have been class-tested for many years with good results and encourage students to apply the key concepts and use of technology to analyze and present results.
Statistical Modeling With R
DOWNLOAD
Author : Pablo Inchausti
language : en
Publisher: Oxford University Press
Release Date : 2023-01-16
Statistical Modeling With R written by Pablo Inchausti and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-16 with Science categories.
To date, statistics has tended to be neatly divided into two theoretical approaches or frameworks: frequentist (or classical) and Bayesian. Scientists typically choose the statistical framework to analyse their data depending on the nature and complexity of the problem, and based on their personal views and prior training on probability and uncertainty. Although textbooks and courses should reflect and anticipate this dual reality, they rarely do so. This accessible textbook explains, discusses, and applies both the frequentist and Bayesian theoretical frameworks to fit the different types of statistical models that allow an analysis of the types of data most commonly gathered by life scientists. It presents the material in an informal, approachable, and progressive manner suitable for readers with only a basic knowledge of calculus and statistics. Statistical Modeling with R is aimed at senior undergraduate and graduate students, professional researchers, and practitioners throughout the life sciences, seeking to strengthen their understanding of quantitative methods and to apply them successfully to real world scenarios, whether in the fields of ecology, evolution, environmental studies, or computational biology.