Statistical Regression Modeling With R

DOWNLOAD
Download Statistical Regression Modeling With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Regression Modeling With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistical Regression Modeling With R
DOWNLOAD
Author : Ding-Geng (Din) Chen
language : en
Publisher: Springer Nature
Release Date : 2021-04-08
Statistical Regression Modeling With R written by Ding-Geng (Din) Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-08 with Mathematics categories.
This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.
Handbook Of Regression Analysis With Applications In R
DOWNLOAD
Author : Samprit Chatterjee
language : en
Publisher: John Wiley & Sons
Release Date : 2020-07-30
Handbook Of Regression Analysis With Applications In R written by Samprit Chatterjee and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-30 with Mathematics categories.
Handbook and reference guide for students and practitioners of statistical regression-based analyses in R Handbook of Regression Analysis with Applications in R, Second Edition is a comprehensive and up-to-date guide to conducting complex regressions in the R statistical programming language. The authors' thorough treatment of "classical" regression analysis in the first edition is complemented here by their discussion of more advanced topics including time-to-event survival data and longitudinal and clustered data. The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include: Regularization methods Smoothing methods Tree-based methods In the new edition of the Handbook, the data analyst's toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website. Of interest to undergraduate and graduate students taking courses in statistics and regression, the Handbook of Regression Analysis will also be invaluable to practicing data scientists and statisticians.
A Modern Approach To Regression With R
DOWNLOAD
Author : Simon Sheather
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-02-27
A Modern Approach To Regression With R written by Simon Sheather and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-27 with Mathematics categories.
This book focuses on tools and techniques for building regression models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to base inferences or conclusions only on valid models. Plots are shown to be an important tool for both building regression models and assessing their validity. We shall see that deciding what to plot and how each plot should be interpreted will be a major challenge. In order to overcome this challenge we shall need to understand the mathematical properties of the fitted regression models and associated diagnostic procedures. As such this will be an area of focus throughout the book. In particular, we shall carefully study the properties of resi- als in order to understand when patterns in residual plots provide direct information about model misspecification and when they do not. The regression output and plots that appear throughout the book have been gen- ated using R. The output from R that appears in this book has been edited in minor ways. On the book web site you will find the R code used in each example in the text.
Advanced Regression Models With Sas And R
DOWNLOAD
Author : Olga Korosteleva
language : en
Publisher: CRC Press
Release Date : 2018-12-07
Advanced Regression Models With Sas And R written by Olga Korosteleva and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-07 with Mathematics categories.
Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master’s students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.
Handbook Of Regression Modeling In People Analytics
DOWNLOAD
Author : Keith McNulty
language : en
Publisher: CRC Press
Release Date : 2021-07-30
Handbook Of Regression Modeling In People Analytics written by Keith McNulty and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-30 with Business & Economics categories.
Despite the recent rapid growth in machine learning and predictive analytics, many of the statistical questions that are faced by researchers and practitioners still involve explaining why something is happening. Regression analysis is the best ‘swiss army knife’ we have for answering these kinds of questions. This book is a learning resource on inferential statistics and regression analysis. It teaches how to do a wide range of statistical analyses in both R and in Python, ranging from simple hypothesis testing to advanced multivariate modelling. Although it is primarily focused on examples related to the analysis of people and talent, the methods easily transfer to any discipline. The book hits a ‘sweet spot’ where there is just enough mathematical theory to support a strong understanding of the methods, but with a step-by-step guide and easily reproducible examples and code, so that the methods can be put into practice immediately. This makes the book accessible to a wide readership, from public and private sector analysts and practitioners to students and researchers. Key Features: • 16 accompanying datasets across a wide range of contexts (e.g. academic, corporate, sports, marketing) • Clear step-by-step instructions on executing the analyses. • Clear guidance on how to interpret results. • Primary instruction in R but added sections for Python coders. • Discussion exercises and data exercises for each of the main chapters. • Final chapter of practice material and datasets ideal for class homework or project work.
Regression Analysis With R
DOWNLOAD
Author : Giuseppe Ciaburro
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-31
Regression Analysis With R written by Giuseppe Ciaburro and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-31 with Computers categories.
Build effective regression models in R to extract valuable insights from real data Key Features Implement different regression analysis techniques to solve common problems in data science - from data exploration to dealing with missing values From Simple Linear Regression to Logistic Regression - this book covers all regression techniques and their implementation in R A complete guide to building effective regression models in R and interpreting results from them to make valuable predictions Book Description Regression analysis is a statistical process which enables prediction of relationships between variables. The predictions are based on the casual effect of one variable upon another. Regression techniques for modeling and analyzing are employed on large set of data in order to reveal hidden relationship among the variables. This book will give you a rundown explaining what regression analysis is, explaining you the process from scratch. The first few chapters give an understanding of what the different types of learning are – supervised and unsupervised, how these learnings differ from each other. We then move to covering the supervised learning in details covering the various aspects of regression analysis. The outline of chapters are arranged in a way that gives a feel of all the steps covered in a data science process – loading the training dataset, handling missing values, EDA on the dataset, transformations and feature engineering, model building, assessing the model fitting and performance, and finally making predictions on unseen datasets. Each chapter starts with explaining the theoretical concepts and once the reader gets comfortable with the theory, we move to the practical examples to support the understanding. The practical examples are illustrated using R code including the different packages in R such as R Stats, Caret and so on. Each chapter is a mix of theory and practical examples. By the end of this book you will know all the concepts and pain-points related to regression analysis, and you will be able to implement your learning in your projects. What you will learn Get started with the journey of data science using Simple linear regression Deal with interaction, collinearity and other problems using multiple linear regression Understand diagnostics and what to do if the assumptions fail with proper analysis Load your dataset, treat missing values, and plot relationships with exploratory data analysis Develop a perfect model keeping overfitting, under-fitting, and cross-validation into consideration Deal with classification problems by applying Logistic regression Explore other regression techniques – Decision trees, Bagging, and Boosting techniques Learn by getting it all in action with the help of a real world case study. Who this book is for This book is intended for budding data scientists and data analysts who want to implement regression analysis techniques using R. If you are interested in statistics, data science, machine learning and wants to get an easy introduction to the topic, then this book is what you need! Basic understanding of statistics and math will help you to get the most out of the book. Some programming experience with R will also be helpful
Learning Statistics With R
DOWNLOAD
Author : Danielle Navarro
language : en
Publisher:
Release Date : 2018
Learning Statistics With R written by Danielle Navarro and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
Modern Statistics With R
DOWNLOAD
Author : Måns Thulin
language : en
Publisher:
Release Date : 2024
Modern Statistics With R written by Måns Thulin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Mathematics categories.
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Linear Models With R
DOWNLOAD
Author : Julian J. Faraway
language : en
Publisher: CRC Press
Release Date : 2016-04-19
Linear Models With R written by Julian J. Faraway and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models