Nonlinear Regression With R

DOWNLOAD
Download Nonlinear Regression With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Regression With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Nonlinear Regression With R
DOWNLOAD
Author : Christian Ritz
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-11
Nonlinear Regression With R written by Christian Ritz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-11 with Mathematics categories.
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. Currently, R offers a wide range of functionality for nonlinear regression analysis, but the relevant functions, packages and documentation are scattered across the R environment. This book provides a coherent and unified treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology. R. Subsequent chapters explain the salient features of the main fitting function nls (), the use of model diagnostics, how to deal with various model departures, and carry out hypothesis testing. In the final chapter grouped-data structures, including an example of a nonlinear mixed-effects regression model, are considered.
Nonlinear Regression With R
DOWNLOAD
Author : Christian Ritz
language : en
Publisher: Springer
Release Date : 2008-11-01
Nonlinear Regression With R written by Christian Ritz and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-01 with Mathematics categories.
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.
Nonlinear Regression
DOWNLOAD
Author : George A. F. Seber
language : en
Publisher: John Wiley & Sons
Release Date : 2005-02-25
Nonlinear Regression written by George A. F. Seber and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-02-25 with Mathematics categories.
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression "A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves." –The Statistician "Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher." –Mathematical Reviews
Robust Nonlinear Regression
DOWNLOAD
Author : Hossein Riazoshams
language : en
Publisher: John Wiley & Sons
Release Date : 2018-06-11
Robust Nonlinear Regression written by Hossein Riazoshams and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-11 with Mathematics categories.
The first book to discuss robust aspects of nonlinear regression—with applications using R software Robust Nonlinear Regression: with Applications using R covers a variety of theories and applications of nonlinear robust regression. It discusses both parts of the classic and robust aspects of nonlinear regression and focuses on outlier effects. It develops new methods in robust nonlinear regression and implements a set of objects and functions in S-language under SPLUS and R software. The software covers a wide range of robust nonlinear fitting and inferences, and is designed to provide facilities for computer users to define their own nonlinear models as an object, and fit models using classic and robust methods as well as detect outliers. The implemented objects and functions can be applied by practitioners as well as researchers. The book offers comprehensive coverage of the subject in 9 chapters: Theories of Nonlinear Regression and Inference; Introduction to R; Optimization; Theories of Robust Nonlinear Methods; Robust and Classical Nonlinear Regression with Autocorrelated and Heteroscedastic errors; Outlier Detection; R Packages in Nonlinear Regression; A New R Package in Robust Nonlinear Regression; and Object Sets. The first comprehensive coverage of this field covers a variety of both theoretical and applied topics surrounding robust nonlinear regression Addresses some commonly mishandled aspects of modeling R packages for both classical and robust nonlinear regression are presented in detail in the book and on an accompanying website Robust Nonlinear Regression: with Applications using R is an ideal text for statisticians, biostatisticians, and statistical consultants, as well as advanced level students of statistics.
Oceanographic Analysis With R
DOWNLOAD
Author : Dan E. Kelley
language : en
Publisher: Springer
Release Date : 2018-10-17
Oceanographic Analysis With R written by Dan E. Kelley and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-17 with Medical categories.
This book presents the R software environment as a key tool for oceanographic computations and provides a rationale for using R over the more widely-used tools of the field such as MATLAB. Kelley provides a general introduction to R before introducing the ‘oce’ package. This package greatly simplifies oceanographic analysis by handling the details of discipline-specific file formats, calculations, and plots. Designed for real-world application and developed with open-source protocols, oce supports a broad range of practical work. Generic functions take care of general operations such as subsetting and plotting data, while specialized functions address more specific tasks such as tidal decomposition, hydrographic analysis, and ADCP coordinate transformation. In addition, the package makes it easy to document work, because its functions automatically update processing logs stored within its data objects. Kelley teaches key R functions using classic examples from the history of oceanography, specifically the work of Alfred Redfield, Gordon Riley, J. Tuzo Wilson, and Walter Munk. Acknowledging the pervasive popularity of MATLAB, the book provides advice to users who would like to switch to R. Including a suite of real-life applications and over 100 exercises and solutions, the treatment is ideal for oceanographers, technicians, and students who want to add R to their list of tools for oceanographic analysis.
Handbook Of Regression Analysis With Applications In R
DOWNLOAD
Author : Samprit Chatterjee
language : en
Publisher: John Wiley & Sons
Release Date : 2020-07-27
Handbook Of Regression Analysis With Applications In R written by Samprit Chatterjee and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-27 with Mathematics categories.
Handbook and reference guide for students and practitioners of statistical regression-based analyses in R Handbook of Regression Analysis with Applications in R, Second Edition is a comprehensive and up-to-date guide to conducting complex regressions in the R statistical programming language. The authors' thorough treatment of "classical" regression analysis in the first edition is complemented here by their discussion of more advanced topics including time-to-event survival data and longitudinal and clustered data. The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include: Regularization methods Smoothing methods Tree-based methods In the new edition of the Handbook, the data analyst's toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website. Of interest to undergraduate and graduate students taking courses in statistics and regression, the Handbook of Regression Analysis will also be invaluable to practicing data scientists and statisticians.
R Ticulate
DOWNLOAD
Author : Martin Bader
language : en
Publisher: John Wiley & Sons
Release Date : 2024-07-08
R Ticulate written by Martin Bader and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-08 with Mathematics categories.
An accessible learning resource that develops data analysis skills for natural science students in an efficient style using the R programming language R-ticulate: A Beginner’s Guide to Data Analysis for Natural Scientists is a compact, example-based, and user-friendly statistics textbook without unnecessary frills, but instead filled with engaging, relatable examples, practical tips, online exercises, resources, and references to extensions, all on a level that follows contemporary curricula taught in large parts of the world. The content structure is unique in the sense that statistical skills are introduced at the same time as software (programming) skills in R. This is by far the best way of teaching from the authors’ experience. Readers of this introductory text will find: Explanations of statistical concepts in simple, easy-to-understand language A variety of approaches to problem solving using both base R and tidyverse Boxes dedicated to specific topics and margin text that summarizes key points A clearly outlined schedule organized into 12 chapters corresponding to the 12 semester weeks of most universities While at its core a traditional printed book, R-ticulate: A Beginner’s Guide to Data Analysis for Natural Scientists comes with a wealth of online teaching material, making it an ideal and efficient reference for students who wish to gain a thorough understanding of the subject, as well as for instructors teaching related courses.
Statistical Regression Modeling With R
DOWNLOAD
Author : Ding-Geng (Din) Chen
language : en
Publisher: Springer Nature
Release Date : 2021-04-08
Statistical Regression Modeling With R written by Ding-Geng (Din) Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-08 with Mathematics categories.
This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.
Regression Analysis Of Count Data
DOWNLOAD
Author : A. Colin Cameron
language : en
Publisher: Cambridge University Press
Release Date : 1998-09-28
Regression Analysis Of Count Data written by A. Colin Cameron and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-09-28 with Business & Economics categories.
This analysis provides a comprehensive account of models and methods to interpret frequency data.
Advanced Statistical Analytics For Health Data Science With Sas And R
DOWNLOAD
Author : Ding-Geng (Din) Chen
language : en
Publisher: CRC Press
Release Date : 2025-09-16
Advanced Statistical Analytics For Health Data Science With Sas And R written by Ding-Geng (Din) Chen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-09-16 with Mathematics categories.
In recent years, there has been a growing emphasis on making statistical methods and analytics accessible to health data science researchers and students. Following the first book on "Statistical Analytics for Health Data Science with SAS and R" (2023, www.routledge.com/9781032325620), this book serves as a comprehensive reference for health data scientists, bridging fundamental statistical principles with advanced analytical techniques. By providing clear explanations of statistical theory and its application to real- world health data, we aim to equip researchers with the necessary tools to navigate the evolving landscape of health data science. Designed for advanced-level data scientists, this book covers a wide range of statistical methodologies, including models for longitudinal data with time-dependent covariates, multi-membership mixed-effects models, statistical modeling of survival data, Bayesian statistics, joint modeling of longitudinal and survival data, nonlinear regression, statistical meta-analysis, spatial statistics, structural equation modeling, latent growth curve modeling, causal inference, and propensity score analysis. A key feature of this book is its emphasis on real-world applications. We integrate publicly available health datasets and provide case studies from a variety of health applications. These practical examples demonstrate how statistical methods can be applied to solve critical problems in health science. To support hands-on learning, we offer implementation guidance using SAS and R, ensuring that readers can replicate analyses and apply statistical techniques to their own research. Step-by-step computational examples facilitate reproducibility and deeper exploration of statistical models. By combining theoretical foundations with practical applications, this book empowers health data scientists to develop robust statistical solutions for complex health challenges. Whether working in academia, industry, or public health, readers will gain the expertise to advance data-driven decision-making and contribute to evidence-based health research.