[PDF] Statistics For Data Science And Analytics - eBooks Review

Statistics For Data Science And Analytics


Statistics For Data Science And Analytics
DOWNLOAD

Download Statistics For Data Science And Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistics For Data Science And Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistics For Data Science And Analytics


Statistics For Data Science And Analytics
DOWNLOAD
Author : Peter C. Bruce
language : en
Publisher: John Wiley & Sons
Release Date : 2024-08-06

Statistics For Data Science And Analytics written by Peter C. Bruce and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-06 with Computers categories.


Introductory statistics textbook with a focus on data science topics such as prediction, correlation, and data exploration Statistics for Data Science and Analytics is a comprehensive guide to statistical analysis using Python, presenting important topics useful for data science such as prediction, correlation, and data exploration. The authors provide an introduction to statistical science and big data, as well as an overview of Python data structures and operations. A range of statistical techniques are presented with their implementation in Python, including hypothesis testing, probability, exploratory data analysis, categorical variables, surveys and sampling, A/B testing, and correlation. The text introduces binary classification, a foundational element of machine learning, validation of statistical models by applying them to holdout data, and probability and inference via the easy-to-understand method of resampling and the bootstrap instead of using a myriad of “kitchen sink” formulas. Regression is taught both as a tool for explanation and for prediction. This book is informed by the authors’ experience designing and teaching both introductory statistics and machine learning at Statistics.com. Each chapter includes practical examples, explanations of the underlying concepts, and Python code snippets to help readers apply the techniques themselves. Statistics for Data Science and Analytics includes information on sample topics such as: Int, float, and string data types, numerical operations, manipulating strings, converting data types, and advanced data structures like lists, dictionaries, and sets Experiment design via randomizing, blinding, and before-after pairing, as well as proportions and percents when handling binary data Specialized Python packages like numpy, scipy, pandas, scikit-learn and statsmodels—the workhorses of data science—and how to get the most value from them Statistical versus practical significance, random number generators, functions for code reuse, and binomial and normal probability distributions Written by and for data science instructors, Statistics for Data Science and Analytics is an excellent learning resource for data science instructors prescribing a required intro stats course for their programs, as well as other students and professionals seeking to transition to the data science field.



Statistics For Data Science And Policy Analysis


Statistics For Data Science And Policy Analysis
DOWNLOAD
Author : Azizur Rahman
language : en
Publisher: Springer Nature
Release Date : 2020-03-31

Statistics For Data Science And Policy Analysis written by Azizur Rahman and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-31 with Mathematics categories.


This book brings together the best contributions of the Applied Statistics and Policy Analysis Conference 2019. Written by leading international experts in the field of statistics, data science and policy evaluation. This book explores the theme of effective policy methods through the use of big data, accurate estimates and modern computing tools and statistical modelling.



Statistics For Data Science


Statistics For Data Science
DOWNLOAD
Author : James D. Miller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-11-17

Statistics For Data Science written by James D. Miller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-17 with Computers categories.


Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement statistics in data science tasks such as data cleaning, mining, and analysis Learn all about probability, statistics, numerical computations, and more with the help of R programs Who This Book Is For This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful. What You Will Learn Analyze the transition from a data developer to a data scientist mindset Get acquainted with the R programs and the logic used for statistical computations Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks Get comfortable with performing various statistical computations for data science programmatically In Detail Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on. This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks. By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically. Style and approach Step by step comprehensive guide with real world examples



Data Science And Analytics With Python R And Spss Programming


Data Science And Analytics With Python R And Spss Programming
DOWNLOAD
Author : V.K. Jain
language : en
Publisher: KHANNA PUBLISHING HOUSE
Release Date :

Data Science And Analytics With Python R And Spss Programming written by V.K. Jain and has been published by KHANNA PUBLISHING HOUSE this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


The Book has been written completely as per AICTE recommended syllabus on "Data Sciences". SALIENT FEATURES OF THE BOOK: Explains how data is collected, managed and stored for data science. With complete courseware for understand the key concepts in data science including their real-world applications and the toolkit used by data scientists. Implement data collection and management. Provided with state of the arts subjectwise. With all required tutorials on R, Python and Bokeh, Anaconda, IBM SPSS-21 and Matplotlib.



Introduction To Statistics And Data Analysis


Introduction To Statistics And Data Analysis
DOWNLOAD
Author : Christian Heumann
language : en
Publisher: Springer
Release Date : 2017-01-26

Introduction To Statistics And Data Analysis written by Christian Heumann and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-26 with Mathematics categories.


This introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. In the experimental sciences and interdisciplinary research, data analysis has become an integral part of any scientific study. Issues such as judging the credibility of data, analyzing the data, evaluating the reliability of the obtained results and finally drawing the correct and appropriate conclusions from the results are vital. The text is primarily intended for undergraduate students in disciplines like business administration, the social sciences, medicine, politics, macroeconomics, etc. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R as well as supplementary material that will enable the reader to quickly adapt all methods to their own applications.



Practical Statistics For Data Scientists


Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-10

Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-10 with Computers categories.


Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data



Data Science And Analytics Strategy


Data Science And Analytics Strategy
DOWNLOAD
Author : Kailash Awati
language : en
Publisher: CRC Press
Release Date : 2023-04-05

Data Science And Analytics Strategy written by Kailash Awati and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-05 with Computers categories.


This book describes how to establish data science and analytics capabilities in organisations using Emergent Design, an evolutionary approach that increases the chances of successful outcomes while minimising upfront investment. Based on their experiences and those of a number of data leaders, the authors provide actionable advice on data technologies, processes, and governance structures so that readers can make choices that are appropriate to their organisational contexts and requirements. The book blends academic research on organisational change and data science processes with real-world stories from experienced data analytics leaders, focusing on the practical aspects of setting up a data capability. In addition to a detailed coverage of capability, culture, and technology choices, a unique feature of the book is its treatment of emerging issues such as data ethics and algorithmic fairness. Data Science and Analytics Strategy: An Emergent Design Approach has been written for professionals who are looking to build data science and analytics capabilities within their organisations as well as those who wish to expand their knowledge and advance their careers in the data space. Providing deep insights into the intersection between data science and business, this guide will help professionals understand how to help their organisations reap the benefits offered by data. Most importantly, readers will learn how to build a fit-for-purpose data science capability in a manner that avoids the most common pitfalls.



Statistical Data Analytics


Statistical Data Analytics
DOWNLOAD
Author : Walter W. Piegorsch
language : en
Publisher: John Wiley & Sons
Release Date : 2015-08-21

Statistical Data Analytics written by Walter W. Piegorsch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-21 with Mathematics categories.


Statistical Data Analytics Statistical Data Analytics Foundations for Data Mining, Informatics, and Knowledge Discovery A comprehensive introduction to statistical methods for data mining and knowledge discovery Applications of data mining and ‘big data’ increasingly take center stage in our modern, knowledge-driven society, supported by advances in computing power, automated data acquisition, social media development and interactive, linkable internet software. This book presents a coherent, technical introduction to modern statistical learning and analytics, starting from the core foundations of statistics and probability. It includes an overview of probability and statistical distributions, basics of data manipulation and visualization, and the central components of standard statistical inferences. The majority of the text extends beyond these introductory topics, however, to supervised learning in linear regression, generalized linear models, and classification analytics. Finally, unsupervised learning via dimension reduction, cluster analysis, and market basket analysis are introduced. Extensive examples using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others. Statistical Data Analytics: Focuses on methods critically used in data mining and statistical informatics. Coherently describes the methods at an introductory level, with extensions to selected intermediate and advanced techniques. Provides informative, technical details for the highlighted methods. Employs the open-source R language as the computational vehicle – along with its burgeoning collection of online packages – to illustrate many of the analyses contained in the book. Concludes each chapter with a range of interesting and challenging homework exercises using actual data from a variety of informatic application areas. This book will appeal as a classroom or training text to intermediate and advanced undergraduates, and to beginning graduate students, with sufficient background in calculus and matrix algebra. It will also serve as a source-book on the foundations of statistical informatics and data analytics to practitioners who regularly apply statistical learning to their modern data.



Data Science And Analytics For Ordinary People


Data Science And Analytics For Ordinary People
DOWNLOAD
Author : Jeffrey Strickland
language : en
Publisher: Lulu.com
Release Date : 2015-06-28

Data Science And Analytics For Ordinary People written by Jeffrey Strickland and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-28 with Business & Economics categories.


Data Science and Analytics for Ordinary People is a collection of blogs I have written on LinkedIn over the past year. As I continue to perform big data analytics, I continue to discover, not only my weaknesses in communicating the information, but new insights into using the information obtained from analytics and communicating it. These are the kinds of things I blog about and are contained herein. Data science and analytics have been used as synonyms on occasion. In reality data science includes data modeling, data mining, data analysis, database architecture and so on. Analytics is what we do to make sense of the data. That is, we take data and turn it into information for business decision makers. This our course implies that we translate our data science jargon into English.



Data Science Analytics And Machine Learning With R


Data Science Analytics And Machine Learning With R
DOWNLOAD
Author : Luiz Paulo Favero
language : en
Publisher: Academic Press
Release Date : 2023-01-23

Data Science Analytics And Machine Learning With R written by Luiz Paulo Favero and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-23 with Computers categories.


Data Science, Analytics and Machine Learning with R explains the principles of data mining and machine learning techniques and accentuates the importance of applied and multivariate modeling. The book emphasizes the fundamentals of each technique, with step-by-step codes and real-world examples with data from areas such as medicine and health, biology, engineering, technology and related sciences. Examples use the most recent R language syntax, with recognized robust, widespread and current packages. Code scripts are exhaustively commented, making it clear to readers what happens in each command. For data collection, readers are instructed how to build their own robots from the very beginning. In addition, an entire chapter focuses on the concept of spatial analysis, allowing readers to build their own maps through geo-referenced data (such as in epidemiologic research) and some basic statistical techniques. Other chapters cover ensemble and uplift modeling and GLMM (Generalized Linear Mixed Models) estimations, both linear and nonlinear. - Presents a comprehensive and practical overview of machine learning, data mining and AI techniques for a broad multidisciplinary audience - Serves readers who are interested in statistics, analytics and modeling, and those who wish to deepen their knowledge in programming through the use of R - Teaches readers how to apply machine learning techniques to a wide range of data and subject areas - Presents data in a graphically appealing way, promoting greater information transparency and interactive learning