[PDF] Stochastic Optimization And Economic Models - eBooks Review

Stochastic Optimization And Economic Models


Stochastic Optimization And Economic Models
DOWNLOAD

Download Stochastic Optimization And Economic Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Optimization And Economic Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Stochastic Optimization And Economic Models


Stochastic Optimization And Economic Models
DOWNLOAD
Author : Jati Sengupta
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Stochastic Optimization And Economic Models written by Jati Sengupta and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


This book presents the main applied aspects of stochas tic optimization in economic models. Stochastic processes and control theory are used under optimization to illustrate the various economic implications of optimal decision rules. Unlike econometrics which deals with estimation, this book emphasizes the decision-theoretic basis of uncertainty specified by the stochastic point of view. Methods of ap plied stochastic control using stochastic processes have now reached an exciti~g phase, where several disciplines like systems engineering, operations research and natural reso- ces interact along with the conventional fields such as mathematical economics, finance and control systems. Our objective is to present a critical overview of this broad terrain from a multidisciplinary viewpoint. In this attempt we have at times stressed viewpoints other than the purely economic one. We believe that the economist would find it most profitable to learn from the other disciplines where stochastic optimization has been successfully applied. It is in this spirit that we have discussed in some detail the following major areas: A. Portfolio models in ·:finance, B. Differential games under uncertainty, c. Self-tuning regulators, D. Models of renewable resources under uncertainty, and ix x PREFACE E. Nonparametric methods of efficiency measurement. Stochastic processes are now increasingly used in economic models to understand the various adaptive behavior implicit in the formulation of expectation and its application in decision rules which are optimum in some sense.



Stochastic Optimization Models In Finance


Stochastic Optimization Models In Finance
DOWNLOAD
Author : William T. Ziemba
language : en
Publisher: World Scientific
Release Date : 2006

Stochastic Optimization Models In Finance written by William T. Ziemba and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Business & Economics categories.


A reprint of one of the classic volumes on portfolio theory and investment, this book has been used by the leading professors at universities such as Stanford, Berkeley, and Carnegie-Mellon. It contains five parts, each with a review of the literature and about 150 pages of computational and review exercises and further in-depth, challenging problems.Frequently referenced and highly usable, the material remains as fresh and relevant for a portfolio theory course as ever.



Optimization In Economics And Finance


Optimization In Economics And Finance
DOWNLOAD
Author : Bruce D. Craven
language : en
Publisher: Springer
Release Date : 2011-01-05

Optimization In Economics And Finance written by Bruce D. Craven and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-05 with Business & Economics categories.


Some recent developments in the mathematics of optimization, including the concepts of invexity and quasimax, have not yet been applied to models of economic growth, and to finance and investment. Their applications to these areas are shown in this book.



Stochastic Optimization In Continuous Time


Stochastic Optimization In Continuous Time
DOWNLOAD
Author : Fwu-Ranq Chang
language : en
Publisher: Cambridge University Press
Release Date : 2004-04-26

Stochastic Optimization In Continuous Time written by Fwu-Ranq Chang and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-04-26 with Business & Economics categories.


First published in 2004, this is a rigorous but user-friendly book on the application of stochastic control theory to economics. A distinctive feature of the book is that mathematical concepts are introduced in a language and terminology familiar to graduate students of economics. The standard topics of many mathematics, economics and finance books are illustrated with real examples documented in the economic literature. Moreover, the book emphasises the dos and don'ts of stochastic calculus, cautioning the reader that certain results and intuitions cherished by many economists do not extend to stochastic models. A special chapter (Chapter 5) is devoted to exploring various methods of finding a closed-form representation of the value function of a stochastic control problem, which is essential for ascertaining the optimal policy functions. The book also includes many practice exercises for the reader. Notes and suggested readings are provided at the end of each chapter for more references and possible extensions.



Multistage Stochastic Optimization


Multistage Stochastic Optimization
DOWNLOAD
Author : Georg Ch. Pflug
language : en
Publisher: Springer
Release Date : 2014-11-12

Multistage Stochastic Optimization written by Georg Ch. Pflug and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-12 with Business & Economics categories.


Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.



Modeling With Stochastic Programming


Modeling With Stochastic Programming
DOWNLOAD
Author : Alan J. King
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-06-19

Modeling With Stochastic Programming written by Alan J. King and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-19 with Mathematics categories.


While there are several texts on how to solve and analyze stochastic programs, this is the first text to address basic questions about how to model uncertainty, and how to reformulate a deterministic model so that it can be analyzed in a stochastic setting. This text would be suitable as a stand-alone or supplement for a second course in OR/MS or in optimization-oriented engineering disciplines where the instructor wants to explain where models come from and what the fundamental issues are. The book is easy-to-read, highly illustrated with lots of examples and discussions. It will be suitable for graduate students and researchers working in operations research, mathematics, engineering and related departments where there is interest in learning how to model uncertainty. Alan King is a Research Staff Member at IBM's Thomas J. Watson Research Center in New York. Stein W. Wallace is a Professor of Operational Research at Lancaster University Management School in England.



Stochastic Simulation Optimization An Optimal Computing Budget Allocation


Stochastic Simulation Optimization An Optimal Computing Budget Allocation
DOWNLOAD
Author : Chun-hung Chen
language : en
Publisher: World Scientific
Release Date : 2010-06-04

Stochastic Simulation Optimization An Optimal Computing Budget Allocation written by Chun-hung Chen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-04 with Computers categories.


With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive.Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.



Reinforcement Learning And Stochastic Optimization


Reinforcement Learning And Stochastic Optimization
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-15

Reinforcement Learning And Stochastic Optimization written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-15 with Mathematics categories.


REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.



Introduction To Stochastic Programming


Introduction To Stochastic Programming
DOWNLOAD
Author : John R. Birge
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-06

Introduction To Stochastic Programming written by John R. Birge and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-06 with Mathematics categories.


This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.



Information And Efficiency In Economic Decision


Information And Efficiency In Economic Decision
DOWNLOAD
Author : Jati Sengupta
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Information And Efficiency In Economic Decision written by Jati Sengupta and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Business & Economics categories.


Use of information is basic to economic theory in two ways. As a basis for optimization, it is central to all normative hypotheses used in eco nomics, but in decision-making situations it has stochastic and evolution ary aspects that are more dynamic and hence more fundamental. This book provides an illustrative survey of the use of information in econom ics and other decision sciences. Since this area is one of the most active fields of research in modern times, it is not possible to be definitive on all aspects of the issues involved. However questions that appear to be most important in this author's view are emphasized in many cases, without drawing any definite conclusions. It is hoped that these questions would provoke new interest for those beginning researchers in the field who are currently most active. Various classifications of information structures and their relevance for optimal decision-making in a stochastic environment are analyzed in some detail. Specifically the following areas are illustrated in its analytic aspects: 1. Stochastic optimization in linear economic models, 2. Stochastic models in dynamic economics with problems of time-inc- sistency, causality and estimation, 3. Optimal output-inventory decisions in stochastic markets, 4. Minimax policies in portfolio theory, 5. Methods of stochastic control and differential games, and 6. Adaptive information structures in decision models in economics and the theory of economic policy.