[PDF] Sufficient Dimension Reduction - eBooks Review

Sufficient Dimension Reduction


Sufficient Dimension Reduction
DOWNLOAD

Download Sufficient Dimension Reduction PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sufficient Dimension Reduction book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Sufficient Dimension Reduction


Sufficient Dimension Reduction
DOWNLOAD
Author : Bing Li
language : en
Publisher: CRC Press
Release Date : 2018-04-27

Sufficient Dimension Reduction written by Bing Li and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-27 with Mathematics categories.


Sufficient dimension reduction is a rapidly developing research field that has wide applications in regression diagnostics, data visualization, machine learning, genomics, image processing, pattern recognition, and medicine, because they are fields that produce large datasets with a large number of variables. Sufficient Dimension Reduction: Methods and Applications with R introduces the basic theories and the main methodologies, provides practical and easy-to-use algorithms and computer codes to implement these methodologies, and surveys the recent advances at the frontiers of this field. Features Provides comprehensive coverage of this emerging research field. Synthesizes a wide variety of dimension reduction methods under a few unifying principles such as projection in Hilbert spaces, kernel mapping, and von Mises expansion. Reflects most recent advances such as nonlinear sufficient dimension reduction, dimension folding for tensorial data, as well as sufficient dimension reduction for functional data. Includes a set of computer codes written in R that are easily implemented by the readers. Uses real data sets available online to illustrate the usage and power of the described methods. Sufficient dimension reduction has undergone momentous development in recent years, partly due to the increased demands for techniques to process high-dimensional data, a hallmark of our age of Big Data. This book will serve as the perfect entry into the field for the beginning researchers or a handy reference for the advanced ones. The author Bing Li obtained his Ph.D. from the University of Chicago. He is currently a Professor of Statistics at the Pennsylvania State University. His research interests cover sufficient dimension reduction, statistical graphical models, functional data analysis, machine learning, estimating equations and quasilikelihood, and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association.



Regression Graphics


Regression Graphics
DOWNLOAD
Author : R. Dennis Cook
language : en
Publisher: John Wiley & Sons
Release Date : 1998-09-30

Regression Graphics written by R. Dennis Cook and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-09-30 with Mathematics categories.


An exploration of regression graphics through computer graphics. Recent developments in computer technology have stimulated new and exciting uses for graphics in statistical analyses. Regression Graphics, one of the first graduate-level textbooks on the subject, demonstrates how statisticians, both theoretical and applied, can use these exciting innovations. After developing a relatively new regression context that requires few scope-limiting conditions, Regression Graphics guides readers through the process of analyzing regressions graphically and assessing and selecting models. This innovative reference makes use of a wide range of graphical tools, including 2D and 3D scatterplots, 3D binary response plots, and scatterplot matrices. Supplemented by a companion ftp site, it features numerous data sets and applied examples that are used to elucidate the theory. Other important features of this book include: * Extensive coverage of a relatively new regression context based on dimension-reduction subspaces and sufficient summary plots * Graphical regression, an iterative visualization process for constructing sufficient regression views * Graphics for regressions with a binary response * Graphics for model assessment, including residual plots * Net-effects plots for assessing predictor contributions * Graphics for predictor and response transformations * Inverse regression methods * Access to a Web site of supplemental plots, data sets, and 3D color displays. An ideal text for students in graduate-level courses on statistical analysis, Regression Graphics is also an excellent reference for professional statisticians.



Dimension Reduction


Dimension Reduction
DOWNLOAD
Author : Christopher J. C. Burges
language : en
Publisher: Now Publishers Inc
Release Date : 2010

Dimension Reduction written by Christopher J. C. Burges and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Computers categories.


We give a tutorial overview of several foundational methods for dimension reduction. We divide the methods into projective methods and methods that model the manifold on which the data lies. For projective methods, we review projection pursuit, principal component analysis (PCA), kernel PCA, probabilistic PCA, canonical correlation analysis (CCA), kernel CCA, Fisher discriminant analysis, oriented PCA, and several techniques for sufficient dimension reduction. For the manifold methods, we review multidimensional scaling (MDS), landmark MDS, Isomap, locally linear embedding, Laplacian eigenmaps, and spectral clustering. Although the review focuses on foundations, we also provide pointers to some more modern techniques. We also describe the correlation dimension as one method for estimating the intrinsic dimension, and we point out that the notion of dimension can be a scale-dependent quantity. The Nystr m method, which links several of the manifold algorithms, is also reviewed. We use a publicly available dataset to illustrate some of the methods. The goal is to provide a self-contained overview of key concepts underlying many of these algorithms, and to give pointers for further reading.



Nonlinear Dimensionality Reduction


Nonlinear Dimensionality Reduction
DOWNLOAD
Author : John A. Lee
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-31

Nonlinear Dimensionality Reduction written by John A. Lee and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-31 with Mathematics categories.


Methods of dimensionality reduction provide a way to understand and visualize the structure of complex data sets. Traditional methods like principal component analysis and classical metric multidimensional scaling suffer from being based on linear models. Until recently, very few methods were able to reduce the data dimensionality in a nonlinear way. However, since the late nineties, many new methods have been developed and nonlinear dimensionality reduction, also called manifold learning, has become a hot topic. New advances that account for this rapid growth are, e.g. the use of graphs to represent the manifold topology, and the use of new metrics like the geodesic distance. In addition, new optimization schemes, based on kernel techniques and spectral decomposition, have lead to spectral embedding, which encompasses many of the recently developed methods. This book describes existing and advanced methods to reduce the dimensionality of numerical databases. For each method, the description starts from intuitive ideas, develops the necessary mathematical details, and ends by outlining the algorithmic implementation. Methods are compared with each other with the help of different illustrative examples. The purpose of the book is to summarize clear facts and ideas about well-known methods as well as recent developments in the topic of nonlinear dimensionality reduction. With this goal in mind, methods are all described from a unifying point of view, in order to highlight their respective strengths and shortcomings. The book is primarily intended for statisticians, computer scientists and data analysts. It is also accessible to other practitioners having a basic background in statistics and/or computational learning, like psychologists (in psychometry) and economists.



Partially Linear Models


Partially Linear Models
DOWNLOAD
Author : Wolfgang Härdle
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-09-14

Partially Linear Models written by Wolfgang Härdle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-09-14 with Business & Economics categories.


In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.



Sufficient Dimension Reduction In High Dimensional Data


Sufficient Dimension Reduction In High Dimensional Data
DOWNLOAD
Author : Lexin Li
language : en
Publisher:
Release Date : 2003

Sufficient Dimension Reduction In High Dimensional Data written by Lexin Li and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with categories.




Optimal Sufficient Dimension Reduction For The Multivariate Conditional Mean In Multivariate Regression


Optimal Sufficient Dimension Reduction For The Multivariate Conditional Mean In Multivariate Regression
DOWNLOAD
Author : Jae Keun Yoo
language : en
Publisher:
Release Date : 2005

Optimal Sufficient Dimension Reduction For The Multivariate Conditional Mean In Multivariate Regression written by Jae Keun Yoo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with categories.




Density Ratio Estimation In Machine Learning


Density Ratio Estimation In Machine Learning
DOWNLOAD
Author : Masashi Sugiyama
language : en
Publisher: Cambridge University Press
Release Date : 2012-02-20

Density Ratio Estimation In Machine Learning written by Masashi Sugiyama and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-20 with Computers categories.


This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.



Dimension Reduction And Sufficient Graphical Models


Dimension Reduction And Sufficient Graphical Models
DOWNLOAD
Author : Kyongwon Kim
language : en
Publisher:
Release Date : 2020

Dimension Reduction And Sufficient Graphical Models written by Kyongwon Kim and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


The methods I develop in my thesis are based on linear or nonlinear sufficient dimension reduction. The basic principle of linear sufficient dimension reduction is to extract a small number of linear combinations of predictor variables, which can represent original predictor variables without loss of information on the conditional distribution of response variable given predictor variables. Nonlinear sufficient dimension reduction is a more generalized version of linear sufficient dimension reduction to the nonlinear context. I am focusing on applying sufficient dimension reduction methods into two areas, regression modeling and graphical models. The first project is about statistical inference in regression context after sufficient dimension reduction. Second, I apply nonlinear sufficient dimension reduction method to the well known statistical graphical models in machine learning. These projects have consistency in a context that discovering areas that sufficient dimension reduction can be applied and establishing statistical theory behind their applications. My first project is about post sufficient dimension reduction statistical inference. The methodologies of sufficient dimension reduction have undergone extensive developments in the past three decades. However, there has been a lack of systematic and rigorous development of post dimension reduction inference, which has seriously hindered its applications. The current common practice is to treat the estimated sufficient predictors as the true predictors and use them as the starting point of the downstream statistical inference. However, this naive inference approach would grossly overestimate the confidence level of an interval, or the power of a test, leading to the distorted results. In this project, we develop a general and comprehensive framework of post dimension reduction inference, which can accommodate any dimension reduction method and model building method, as long as their corresponding influence functions are available. Within this general framework, we derive the influence functions and present the explicit post reduction formulas for the combinations of numerous dimension reduction and model building methods. We then develop post reduction inference methods for both confidence interval and hypothesis testing. We investigate the finite-sample performance of our procedures by simulations and a real data analysis. My second project is about applying nonlinear dimension reduction technique to graphical models. We introduce the Sufficient Graphical Model by applying the recently developed nonlinear sufficient dimension reduction techniques to the evaluation of conditional independence. Graphical model is nonparametric in nature, as it does not make distributional assumptions such as the Gaussian or copula Gaussian assumptions. However, unlike fully nonparametric graphical model, which relies on the high-dimensional kernel to characterize a conditional independence, our graphical model is based on a conditional independence given a set of sufficient predictors with a substantially reduced dimension. In this way, we avoid the curse of dimensionality that comes with a high-dimensional kernel. We develop the population-level properties, convergence rate, and consistency of our estimate. By simulation comparisons and an analysis of the DREAM 4 Challenge data set, we demonstrate that our method outperforms the existing methods when the Gaussian or copula Gaussian assumptions are violated, and its performance remains excellent in the high-dimensional setting.



Applied Regression Including Computing And Graphics


Applied Regression Including Computing And Graphics
DOWNLOAD
Author : R. Dennis Cook
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-25

Applied Regression Including Computing And Graphics written by R. Dennis Cook and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-25 with Mathematics categories.


A step-by-step guide to computing and graphics in regression analysis In this unique book, leading statisticians Dennis Cook and Sanford Weisberg expertly blend regression fundamentals and cutting-edge graphical techniques. They combine and up- date most of the material from their widely used earlier work, An Introduction to Regression Graphics, and Weisberg's Applied Linear Regression; incorporate the latest in statistical graphics, computing, and regression models; and wind up with a modern, fully integrated approach to one of the most important tools of data analysis. In 23 concise, easy-to-digest chapters, the authors present:? A wealth of simple 2D and 3D graphical techniques, helping visualize results through graphs * An improved version of the user-friendly Arc software, which lets readers promptly implement new ideas * Complete coverage of regression models, including logistic regression and generalized linear models * More than 300 figures, easily reproducible on the computer * Numerous examples and problems based on real data * A companion Web site featuring free software and advice, available at www.wiley.com/mathem atics Accessible, self-contained, and fully referenced, Applied Regression Including Computing and Graphics assumes only a first course in basic statistical methods and provides a bona fide user manual for the Arc software. It is an invaluable resource for anyone interested in learning how to analyze regression problems with confidence and depth.