System Identification And Adaptive Control

DOWNLOAD
Download System Identification And Adaptive Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get System Identification And Adaptive Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
System Identification For Self Adaptive Control
DOWNLOAD
Author : W. D. T. Davies
language : en
Publisher: John Wiley & Sons
Release Date : 1970
System Identification For Self Adaptive Control written by W. D. T. Davies and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1970 with Technology & Engineering categories.
System Identification And Adaptive Control
DOWNLOAD
Author : Yiannis Boutalis
language : en
Publisher: Springer Science & Business
Release Date : 2014-04-23
System Identification And Adaptive Control written by Yiannis Boutalis and has been published by Springer Science & Business this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-23 with Technology & Engineering categories.
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.
Adaptive Nonlinear System Identification
DOWNLOAD
Author : Tokunbo Ogunfunmi
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-09-05
Adaptive Nonlinear System Identification written by Tokunbo Ogunfunmi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-05 with Science categories.
Focuses on System Identification applications of the adaptive methods presented. but which can also be applied to other applications of adaptive nonlinear processes. Covers recent research results in the area of adaptive nonlinear system identification from the authors and other researchers in the field.
System Identification And Adaptive Control
DOWNLOAD
Author : Bahram Shafai
language : en
Publisher: Springer
Release Date : 2012-04-30
System Identification And Adaptive Control written by Bahram Shafai and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-30 with Technology & Engineering categories.
This book offers comprehensive coverage of identification and adaptive control while familiarizing graduate students and practicing engineers with computational software tools such as MATLAB and SIMULINK and describing the underlying theoretical concepts. Identification is the process of mathematically modeling a system based on measurement data that may be limited or uncertain. Adaptive control is the means whereby a system that is poorly modeled is controlled adequately. Therefore the topical coverage is divided into two parts: Part I describes fundamental topics of system identification independent of adaptive control and discusses nonparametric and parameteric estimation methods while emphasizing least squares techniques instrumental variables and prediction error methods. Part II describes various methods of adaptive control in which the materials discussed in Part I are essential for control purposes, including model reference, adaptive control and self-tuning regulators.
Identification And Stochastic Adaptive Control
DOWNLOAD
Author : Han-fu Chen
language : en
Publisher: Springer Science & Business Media
Release Date : 1991-11
Identification And Stochastic Adaptive Control written by Han-fu Chen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-11 with Juvenile Nonfiction categories.
Identifying the input-output relationship of a system or discovering the evolutionary law of a signal on the basis of observation data, and applying the constructed mathematical model to predicting, controlling or extracting other useful information constitute a problem that has been drawing a lot of attention from engineering and gaining more and more importance in econo metrics, biology, environmental science and other related areas. Over the last 30-odd years, research on this problem has rapidly developed in various areas under different terms, such as time series analysis, signal processing and system identification. Since the randomness almost always exists in real systems and in observation data, and since the random process is sometimes used to model the uncertainty in systems, it is reasonable to consider the object as a stochastic system. In some applications identification can be carried out off line, but in other cases this is impossible, for example, when the structure or the parameter of the system depends on the sample, or when the system is time-varying. In these cases we have to identify the system on line and to adjust the control in accordance with the model which is supposed to be approaching the true system during the process of identification. This is why there has been an increasing interest in identification and adaptive control for stochastic systems from both theorists and practitioners.
Stochastic Systems
DOWNLOAD
Author : P. R. Kumar
language : en
Publisher: SIAM
Release Date : 2015-12-15
Stochastic Systems written by P. R. Kumar and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-15 with Mathematics categories.
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.?
Bounding Approaches To System Identification
DOWNLOAD
Author : M. Milanese
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Bounding Approaches To System Identification written by M. Milanese and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Science categories.
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
Fuzzy System Identification And Adaptive Control
DOWNLOAD
Author : Ruiyun Qi
language : en
Publisher: Springer
Release Date : 2019-06-11
Fuzzy System Identification And Adaptive Control written by Ruiyun Qi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-11 with Technology & Engineering categories.
This book provides readers with a systematic and unified framework for identification and adaptive control of Takagi–Sugeno (T–S) fuzzy systems. Its design techniques help readers applying these powerful tools to solve challenging nonlinear control problems. The book embodies a systematic study of fuzzy system identification and control problems, using T–S fuzzy system tools for both function approximation and feedback control of nonlinear systems. Alongside this framework, the book also: introduces basic concepts of fuzzy sets, logic and inference system; discusses important properties of T–S fuzzy systems; develops offline and online identification algorithms for T–S fuzzy systems; investigates the various controller structures and corresponding design conditions for adaptive control of continuous-time T–S fuzzy systems; develops adaptive control algorithms for discrete-time input–output formT–S fuzzy systems with much relaxed design conditions, and discrete-time state-space T–S fuzzy systems; and designs stable parameter-adaptation algorithms for both linearly and nonlinearly parameterized T–S fuzzy systems. The authors address adaptive fault compensation problems for T–S fuzzy systems subject to actuator faults. They cover a broad spectrum of related technical topics and to develop a substantial set of adaptive nonlinear system control tools. Fuzzy System Identification and Adaptive Control helps engineers in the mechanical, electrical and aerospace fields, to solve complex control design problems. The book can be used as a reference for researchers and academics in nonlinear, intelligent, adaptive and fault-tolerant control.
Adaptive Control Tutorial
DOWNLOAD
Author : Petros Ioannou
language : en
Publisher: SIAM
Release Date : 2006-01-01
Adaptive Control Tutorial written by Petros Ioannou and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Mathematics categories.
Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index
Adaptive Learning Methods For Nonlinear System Modeling
DOWNLOAD
Author : Danilo Comminiello
language : en
Publisher: Butterworth-Heinemann
Release Date : 2018-07-05
Adaptive Learning Methods For Nonlinear System Modeling written by Danilo Comminiello and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-05 with Technology & Engineering categories.
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.