The Application Of Neural Networks In The Earth System Sciences

DOWNLOAD
Download The Application Of Neural Networks In The Earth System Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Application Of Neural Networks In The Earth System Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
The Application Of Neural Networks In The Earth System Sciences
DOWNLOAD
Author : Vladimir M. Krasnopolsky
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-14
The Application Of Neural Networks In The Earth System Sciences written by Vladimir M. Krasnopolsky and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-14 with Science categories.
This book brings together a representative set of Earth System Science (ESS) applications of the neural network (NN) technique. It examines a progression of atmospheric and oceanic problems, which, from the mathematical point of view, can be formulated as complex, multidimensional, and nonlinear mappings. It is shown that these problems can be solved utilizing a particular type of NN – the multilayer perceptron (MLP). This type of NN applications covers the majority of NN applications developed in ESSs such as meteorology, oceanography, atmospheric and oceanic satellite remote sensing, numerical weather prediction, and climate studies. The major properties of the mappings and MLP NNs are formulated and discussed. Also, the book presents basic background for each introduced application and provides an extensive set of references. “This is an excellent book to learn how to apply artificial neural network methods to earth system sciences. The author, Dr. Vladimir Krasnopolsky, is a universally recognized master in this field. With his vast knowledge and experience, he carefully guides the reader through a broad variety of problems found in the earth system sciences where neural network methods can be applied fruitfully. (...) The broad range of topics covered in this book ensures that researchers/graduate students from many fields (...) will find it an invaluable guide to neural network methods.” (Prof. William W. Hsieh, University of British Columbia, Vancouver, Canada) “Vladimir Krasnopolsky has been the “founding father” of applying computation intelligence methods to environmental science; (...) Dr. Krasnopolsky has created a masterful exposition of a young, yet maturing field that promises to advance a deeper understanding of best modeling practices in environmental science.” (Dr. Sue Ellen Haupt, National Center for Atmospheric Research, Boulder, USA) “Vladimir Krasnopolsky has written an important and wonderful book on applications of neural networks to replace complex and expensive computational algorithms within Earth System Science models. He is uniquely qualified to write this book, since he has been a true pioneer with regard to many of these applications. (...) Many other examples of creative emulations will inspire not just readers interested in the Earth Sciences, but any other modeling practitioner (...) to address both theoretical and practical complex problems that may (or will!) arise in a complex system." ” (Prof. Eugenia Kalnay, University of Maryland, USA)
Deep Learning For The Earth Sciences
DOWNLOAD
Author : Gustau Camps-Valls
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-18
Deep Learning For The Earth Sciences written by Gustau Camps-Valls and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-18 with Technology & Engineering categories.
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Neural Nets Applications In Geography
DOWNLOAD
Author : Bruce C. Hewitson
language : en
Publisher: Springer Science & Business Media
Release Date : 1994
Neural Nets Applications In Geography written by Bruce C. Hewitson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Computers categories.
Neural nets offer a new strategy for spatial analysis, and their application holds enormous potential for the geographic sciences. However, the number of studies that have utilized these techniques is limited. This lack of interest can be attributed, in part, to lack of exposure, to the use of extensive and often confusing jargon, and to the misapprehension that, without an underlying statistical model, the explanatory power of the neural net is very low. This text attacks all three issues, demonstrating a wide variety of neural net applications in geography in a simple manner, with minimal jargon.
Introduction To Environmental Data Science
DOWNLOAD
Author : William W. Hsieh
language : en
Publisher: Cambridge University Press
Release Date : 2023-03-23
Introduction To Environmental Data Science written by William W. Hsieh and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-23 with Computers categories.
A comprehensive guide to machine learning and statistics for students and researchers of environmental data science.
Geophysical Applications Of Artificial Neural Networks And Fuzzy Logic
DOWNLOAD
Author : W. Sandham
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Geophysical Applications Of Artificial Neural Networks And Fuzzy Logic written by W. Sandham and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.
The past fifteen years has witnessed an explosive growth in the fundamental research and applications of artificial neural networks (ANNs) and fuzzy logic (FL). The main impetus behind this growth has been the ability of such methods to offer solutions not amenable to conventional techniques, particularly in application domains involving pattern recognition, prediction and control. Although the origins of ANNs and FL may be traced back to the 1940s and 1960s, respectively, the most rapid progress has only been achieved in the last fifteen years. This has been due to significant theoretical advances in our understanding of ANNs and FL, complemented by major technological developments in high-speed computing. In geophysics, ANNs and FL have enjoyed significant success and are now employed routinely in the following areas (amongst others): 1. Exploration Seismology. (a) Seismic data processing (trace editing; first break picking; deconvolution and multiple suppression; wavelet estimation; velocity analysis; noise identification/reduction; statics analysis; dataset matching/prediction, attenuation), (b) AVO analysis, (c) Chimneys, (d) Compression I dimensionality reduction, (e) Shear-wave analysis, (f) Interpretation (event tracking; lithology prediction and well-log analysis; prospect appraisal; hydrocarbon prediction; inversion; reservoir characterisation; quality assessment; tomography). 2. Earthquake Seismology and Subterranean Nuclear Explosions. 3. Mineral Exploration. 4. Electromagnetic I Potential Field Exploration. (a) Electromagnetic methods, (b) Potential field methods, (c) Ground penetrating radar, (d) Remote sensing, (e) inversion.
Large Scale Machine Learning In The Earth Sciences
DOWNLOAD
Author : Ashok N. Srivastava
language : en
Publisher: CRC Press
Release Date : 2017-08-01
Large Scale Machine Learning In The Earth Sciences written by Ashok N. Srivastava and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-01 with Computers categories.
From the Foreword: "While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences." --Vipin Kumar, University of Minnesota Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.
Artificial Neural Networks
DOWNLOAD
Author : Chi Leung Patrick Hui
language : en
Publisher: BoD – Books on Demand
Release Date : 2011-04-11
Artificial Neural Networks written by Chi Leung Patrick Hui and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-11 with Computers categories.
This book covers 27 articles in the applications of artificial neural networks (ANN) in various disciplines which includes business, chemical technology, computing, engineering, environmental science, science and nanotechnology. They modeled the ANN with verification in different areas. They demonstrated that the ANN is very useful model and the ANN could be applied in problem solving and machine learning. This book is suitable for all professionals and scientists in understanding how ANN is applied in various areas.
Fast Processes In Large Scale Atmospheric Models
DOWNLOAD
Author : Yangang Liu
language : en
Publisher: John Wiley & Sons
Release Date : 2023-12-19
Fast Processes In Large Scale Atmospheric Models written by Yangang Liu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-19 with Science categories.
Improving weather and climate prediction with better representation of fast processes in atmospheric models Many atmospheric processes that influence Earth’s weather and climate occur at spatiotemporal scales that are too small to be resolved in large scale models. They must be parameterized, which means approximately representing them by variables that can be resolved by model grids. Fast Processes in Large-Scale Atmospheric Models: Progress, Challenges and Opportunities explores ways to better investigate and represent multiple parameterized processes in models and thus improve their ability to make accurate climate and weather predictions. Volume highlights include: Historical development of the parameterization of fast processes in numerical models Different types of major sub-grid processes and their parameterizations Efforts to unify the treatment of individual processes and their interactions Top-down versus bottom-up approaches across multiple scales Measurement techniques, observational studies, and frameworks for model evaluation Emerging challenges, new opportunities, and future research directions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Computational Intelligence In Software Modeling
DOWNLOAD
Author : Vishal Jain
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2022-02-21
Computational Intelligence In Software Modeling written by Vishal Jain and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-21 with Computers categories.
Researchers, academicians and professionals expone in this book their research in the application of intelligent computing techniques to software engineering. As software systems are becoming larger and complex, software engineering tasks become increasingly costly and prone to errors. Evolutionary algorithms, machine learning approaches, meta-heuristic algorithms, and others techniques can help the effi ciency of software engineering.
State Of The Art In Neural Networks And Their Applications
DOWNLOAD
Author : Ayman S. El-Baz
language : en
Publisher: Academic Press
Release Date : 2021-07-21
State Of The Art In Neural Networks And Their Applications written by Ayman S. El-Baz and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-21 with Science categories.
State of the Art in Neural Networks and Their Applications presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. Advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing and suitable data analytics useful for clinical diagnosis and research applications are covered, including relevant case studies. The application of Neural Network, Artificial Intelligence, and Machine Learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume 1 covers the state-of-the-art deep learning approaches for the detection of renal, retinal, breast, skin, and dental abnormalities and more. - Includes applications of neural networks, AI, machine learning, and deep learning techniques to a variety of imaging technologies - Provides in-depth technical coverage of computer-aided diagnosis (CAD), with coverage of computer-aided classification, Unified Deep Learning Frameworks, mammography, fundus imaging, optical coherence tomography, cryo-electron tomography, 3D MRI, CT, and more - Covers deep learning for several medical conditions including renal, retinal, breast, skin, and dental abnormalities, Medical Image Analysis, as well as detection, segmentation, and classification via AI