The Complete Self Driving Car Course Applied Deep Learning

DOWNLOAD
Download The Complete Self Driving Car Course Applied Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Complete Self Driving Car Course Applied Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
The Complete Self Driving Car Course Applied Deep Learning
DOWNLOAD
Author : Rayan Slim
language : en
Publisher:
Release Date : 2019
The Complete Self Driving Car Course Applied Deep Learning written by Rayan Slim and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Use deep learning, Computer Vision, and machine learning techniques to build an autonomous car with Python About This Video The transition from a beginner to deep learning expert Learn through demonstrations as your instructor completes each task with you No experience required In Detail Self-driving cars have emerged to be one of the most transformative technologies. Fueled by deep learning algorithms, they are rapidly developing and creating new opportunities in the mobility sector. Deep learning jobs command some of the highest salaries in the development world. This is the first and one of the only courses that make practical use of deep learning and applies it to building a self-driving car. You'll learn and master deep learning in this fun and exciting course with top instructor Rayan Slim. Having trained thousands of students, Rayan is a highly rated and experienced instructor who follows a learning-by-doing approach. By the end of the course, you will have built a fully functional self-driving car powered entirely by deep learning. This powerful simulation will impress even the most senior developers and ensure you have hands-on skills in neural networks that you can bring to any project or company. This course will show you how to do the following: Use Computer Vision techniques via OpenCV to identify lane lines for a self-driving car Train a perceptron-based neural network to classify between binary classes Train convolutional neural networks to identify various traffic signs Train deep neural networks to fit complex datasets Master Keras, a power neural network library written in Python Build and train a fully functional self-driving car Downloading the example code for this course: You can download the example code files for this course on GitHub at the following link: https://github.com/PacktPublishing/The-Complete-Self-Driving-Car-Course--Applied-Deep-Learning . If you require support please email: [email protected].
Applied Deep Learning And Computer Vision For Self Driving Cars
DOWNLOAD
Author : Sumit Ranjan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-08-14
Applied Deep Learning And Computer Vision For Self Driving Cars written by Sumit Ranjan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-14 with Computers categories.
Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV Key FeaturesBuild and train powerful neural network models to build an autonomous carImplement computer vision, deep learning, and AI techniques to create automotive algorithmsOvercome the challenges faced while automating different aspects of driving using modern Python libraries and architecturesBook Description Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries. What you will learnImplement deep neural network from scratch using the Keras libraryUnderstand the importance of deep learning in self-driving carsGet to grips with feature extraction techniques in image processing using the OpenCV libraryDesign a software pipeline that detects lane lines in videosImplement a convolutional neural network (CNN) image classifier for traffic signal signsTrain and test neural networks for behavioral-cloning by driving a car in a virtual simulatorDiscover various state-of-the-art semantic segmentation and object detection architecturesWho this book is for If you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.
Hands On Vision And Behavior For Self Driving Cars
DOWNLOAD
Author : Luca Venturi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-10-23
Hands On Vision And Behavior For Self Driving Cars written by Luca Venturi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-23 with Computers categories.
A practical guide to learning visual perception for self-driving cars for computer vision and autonomous system engineers Key FeaturesExplore the building blocks of the visual perception system in self-driving carsIdentify objects and lanes to define the boundary of driving surfaces using open-source tools like OpenCV and PythonImprove the object detection and classification capabilities of systems with the help of neural networksBook Description The visual perception capabilities of a self-driving car are powered by computer vision. The work relating to self-driving cars can be broadly classified into three components - robotics, computer vision, and machine learning. This book provides existing computer vision engineers and developers with the unique opportunity to be associated with this booming field. You will learn about computer vision, deep learning, and depth perception applied to driverless cars. The book provides a structured and thorough introduction, as making a real self-driving car is a huge cross-functional effort. As you progress, you will cover relevant cases with working code, before going on to understand how to use OpenCV, TensorFlow and Keras to analyze video streaming from car cameras. Later, you will learn how to interpret and make the most of lidars (light detection and ranging) to identify obstacles and localize your position. You’ll even be able to tackle core challenges in self-driving cars such as finding lanes, detecting pedestrian and crossing lights, performing semantic segmentation, and writing a PID controller. By the end of this book, you’ll be equipped with the skills you need to write code for a self-driving car running in a driverless car simulator, and be able to tackle various challenges faced by autonomous car engineers. What you will learnUnderstand how to perform camera calibrationBecome well-versed with how lane detection works in self-driving cars using OpenCVExplore behavioral cloning by self-driving in a video-game simulatorGet to grips with using lidarsDiscover how to configure the controls for autonomous vehiclesUse object detection and semantic segmentation to locate lanes, cars, and pedestriansWrite a PID controller to control a self-driving car running in a simulatorWho this book is for This book is for software engineers who are interested in learning about technologies that drive the autonomous car revolution. Although basic knowledge of computer vision and Python programming is required, prior knowledge of advanced deep learning and how to use sensors (lidar) is not needed.
Practical Deep Learning For Cloud Mobile And Edge
DOWNLOAD
Author : Anirudh Koul
language : en
Publisher: O'Reilly Media
Release Date : 2019-10-14
Practical Deep Learning For Cloud Mobile And Edge written by Anirudh Koul and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-14 with Computers categories.
Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users
Advanced Applied Deep Learning
DOWNLOAD
Author : Umberto Michelucci
language : en
Publisher: Apress
Release Date : 2019-09-28
Advanced Applied Deep Learning written by Umberto Michelucci and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-28 with Computers categories.
Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection using Keras and TensorFlow. Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models. Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level. What You Will Learn See how convolutional neural networks and object detection work Save weights and models on disk Pause training and restart it at a later stage Use hardware acceleration (GPUs) in your code Work with the Dataset TensorFlow abstraction and use pre-trained models and transfer learning Remove and add layers to pre-trained networks to adapt them to your specific project Apply pre-trained models such as Alexnet and VGG16 to new datasets Who This Book Is For Scientists and researchers with intermediate-to-advanced Python and machine learning know-how. Additionally, intermediate knowledge of Keras and TensorFlow is expected.
Ai Crash Course
DOWNLOAD
Author : Hadelin de Ponteves
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-11-29
Ai Crash Course written by Hadelin de Ponteves and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-29 with Computers categories.
Unlock the power of artificial intelligence with top Udemy AI instructor Hadelin de Ponteves. Key FeaturesLearn from friendly, plain English explanations and practical activitiesPut ideas into action with 5 hands-on projects that show step-by-step how to build intelligent softwareUse AI to win classic video games and construct a virtual self-driving carBook Description Welcome to the Robot World ... and start building intelligent software now! Through his best-selling video courses, Hadelin de Ponteves has taught hundreds of thousands of people to write AI software. Now, for the first time, his hands-on, energetic approach is available as a book. Starting with the basics before easing you into more complicated formulas and notation, AI Crash Course gives you everything you need to build AI systems with reinforcement learning and deep learning. Five full working projects put the ideas into action, showing step-by-step how to build intelligent software using the best and easiest tools for AI programming, including Python, TensorFlow, Keras, and PyTorch. AI Crash Course teaches everyone to build an AI to work in their applications. Once you've read this book, you're only limited by your imagination. What you will learnMaster the basics of AI without any previous experienceBuild fun projects, including a virtual-self-driving car and a robot warehouse workerUse AI to solve real-world business problemsLearn how to code in PythonDiscover the 5 principles of reinforcement learningCreate your own AI toolkitWho this book is for If you want to add AI to your skillset, this book is for you. It doesn't require data science or machine learning knowledge. Just maths basics (high school level).
Applied Deep Learning And Computer Vision For Self Driving Cars
DOWNLOAD
Author : Sumit Ranjan
language : en
Publisher:
Release Date : 2020-08-14
Applied Deep Learning And Computer Vision For Self Driving Cars written by Sumit Ranjan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-14 with Computers categories.
Autonomous Driving
DOWNLOAD
Author : Andreas Herrmann
language : en
Publisher: Emerald Group Publishing
Release Date : 2018-03-26
Autonomous Driving written by Andreas Herrmann and has been published by Emerald Group Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-26 with Business & Economics categories.
The technology and engineering behind autonomous driving is advancing at pace. This book presents the latest technical advances and the economic, environmental and social impact driverless cars will have on individuals and the automotive industry.
Advanced Deep Learning With Python
DOWNLOAD
Author : Ivan Vasilev
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-12
Advanced Deep Learning With Python written by Ivan Vasilev and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-12 with Computers categories.
Gain expertise in advanced deep learning domains such as neural networks, meta-learning, graph neural networks, and memory augmented neural networks using the Python ecosystem Key FeaturesGet to grips with building faster and more robust deep learning architecturesInvestigate and train convolutional neural network (CNN) models with GPU-accelerated libraries such as TensorFlow and PyTorchApply deep neural networks (DNNs) to computer vision problems, NLP, and GANsBook Description In order to build robust deep learning systems, you’ll need to understand everything from how neural networks work to training CNN models. In this book, you’ll discover newly developed deep learning models, methodologies used in the domain, and their implementation based on areas of application. You’ll start by understanding the building blocks and the math behind neural networks, and then move on to CNNs and their advanced applications in computer vision. You'll also learn to apply the most popular CNN architectures in object detection and image segmentation. Further on, you’ll focus on variational autoencoders and GANs. You’ll then use neural networks to extract sophisticated vector representations of words, before going on to cover various types of recurrent networks, such as LSTM and GRU. You’ll even explore the attention mechanism to process sequential data without the help of recurrent neural networks (RNNs). Later, you’ll use graph neural networks for processing structured data, along with covering meta-learning, which allows you to train neural networks with fewer training samples. Finally, you’ll understand how to apply deep learning to autonomous vehicles. By the end of this book, you’ll have mastered key deep learning concepts and the different applications of deep learning models in the real world. What you will learnCover advanced and state-of-the-art neural network architecturesUnderstand the theory and math behind neural networksTrain DNNs and apply them to modern deep learning problemsUse CNNs for object detection and image segmentationImplement generative adversarial networks (GANs) and variational autoencoders to generate new imagesSolve natural language processing (NLP) tasks, such as machine translation, using sequence-to-sequence modelsUnderstand DL techniques, such as meta-learning and graph neural networksWho this book is for This book is for data scientists, deep learning engineers and researchers, and AI developers who want to further their knowledge of deep learning and build innovative and unique deep learning projects. Anyone looking to get to grips with advanced use cases and methodologies adopted in the deep learning domain using real-world examples will also find this book useful. Basic understanding of deep learning concepts and working knowledge of the Python programming language is assumed.
Dive Into Deep Learning
DOWNLOAD
Author : Joanne Quinn
language : en
Publisher: Corwin Press
Release Date : 2019-07-15
Dive Into Deep Learning written by Joanne Quinn and has been published by Corwin Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-15 with Education categories.
The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.