[PDF] Applied Deep Learning And Computer Vision For Self Driving Cars - eBooks Review

Applied Deep Learning And Computer Vision For Self Driving Cars


Applied Deep Learning And Computer Vision For Self Driving Cars
DOWNLOAD

Download Applied Deep Learning And Computer Vision For Self Driving Cars PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Deep Learning And Computer Vision For Self Driving Cars book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Applied Deep Learning And Computer Vision For Self Driving Cars


Applied Deep Learning And Computer Vision For Self Driving Cars
DOWNLOAD
Author : Sumit Ranjan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-08-14

Applied Deep Learning And Computer Vision For Self Driving Cars written by Sumit Ranjan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-14 with Computers categories.


Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV Key FeaturesBuild and train powerful neural network models to build an autonomous carImplement computer vision, deep learning, and AI techniques to create automotive algorithmsOvercome the challenges faced while automating different aspects of driving using modern Python libraries and architecturesBook Description Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries. What you will learnImplement deep neural network from scratch using the Keras libraryUnderstand the importance of deep learning in self-driving carsGet to grips with feature extraction techniques in image processing using the OpenCV libraryDesign a software pipeline that detects lane lines in videosImplement a convolutional neural network (CNN) image classifier for traffic signal signsTrain and test neural networks for behavioral-cloning by driving a car in a virtual simulatorDiscover various state-of-the-art semantic segmentation and object detection architecturesWho this book is for If you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.



Applied Deep Learning And Computer Vision For Self Driving Cars


Applied Deep Learning And Computer Vision For Self Driving Cars
DOWNLOAD
Author : Sumit Ranjan
language : en
Publisher:
Release Date : 2020-08-14

Applied Deep Learning And Computer Vision For Self Driving Cars written by Sumit Ranjan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-14 with Computers categories.




The Complete Self Driving Car Course Applied Deep Learning


The Complete Self Driving Car Course Applied Deep Learning
DOWNLOAD
Author : Rayan Slim
language : en
Publisher:
Release Date : 2019

The Complete Self Driving Car Course Applied Deep Learning written by Rayan Slim and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.


Use deep learning, Computer Vision, and machine learning techniques to build an autonomous car with Python About This Video The transition from a beginner to deep learning expert Learn through demonstrations as your instructor completes each task with you No experience required In Detail Self-driving cars have emerged to be one of the most transformative technologies. Fueled by deep learning algorithms, they are rapidly developing and creating new opportunities in the mobility sector. Deep learning jobs command some of the highest salaries in the development world. This is the first and one of the only courses that make practical use of deep learning and applies it to building a self-driving car. You'll learn and master deep learning in this fun and exciting course with top instructor Rayan Slim. Having trained thousands of students, Rayan is a highly rated and experienced instructor who follows a learning-by-doing approach. By the end of the course, you will have built a fully functional self-driving car powered entirely by deep learning. This powerful simulation will impress even the most senior developers and ensure you have hands-on skills in neural networks that you can bring to any project or company. This course will show you how to do the following: Use Computer Vision techniques via OpenCV to identify lane lines for a self-driving car Train a perceptron-based neural network to classify between binary classes Train convolutional neural networks to identify various traffic signs Train deep neural networks to fit complex datasets Master Keras, a power neural network library written in Python Build and train a fully functional self-driving car Downloading the example code for this course: You can download the example code files for this course on GitHub at the following link: https://github.com/PacktPublishing/The-Complete-Self-Driving-Car-Course--Applied-Deep-Learning . If you require support please email: [email protected].



Tensorflow 2 0 Computer Vision Cookbook


Tensorflow 2 0 Computer Vision Cookbook
DOWNLOAD
Author : Jesus Martinez
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-02-26

Tensorflow 2 0 Computer Vision Cookbook written by Jesus Martinez and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-26 with Computers categories.


Get well versed with state-of-the-art techniques to tailor training processes and boost the performance of computer vision models using machine learning and deep learning techniques Key FeaturesDevelop, train, and use deep learning algorithms for computer vision tasks using TensorFlow 2.xDiscover practical recipes to overcome various challenges faced while building computer vision modelsEnable machines to gain a human level understanding to recognize and analyze digital images and videosBook Description Computer vision is a scientific field that enables machines to identify and process digital images and videos. This book focuses on independent recipes to help you perform various computer vision tasks using TensorFlow. The book begins by taking you through the basics of deep learning for computer vision, along with covering TensorFlow 2.x's key features, such as the Keras and tf.data.Dataset APIs. You'll then learn about the ins and outs of common computer vision tasks, such as image classification, transfer learning, image enhancing and styling, and object detection. The book also covers autoencoders in domains such as inverse image search indexes and image denoising, while offering insights into various architectures used in the recipes, such as convolutional neural networks (CNNs), region-based CNNs (R-CNNs), VGGNet, and You Only Look Once (YOLO). Moving on, you'll discover tips and tricks to solve any problems faced while building various computer vision applications. Finally, you'll delve into more advanced topics such as Generative Adversarial Networks (GANs), video processing, and AutoML, concluding with a section focused on techniques to help you boost the performance of your networks. By the end of this TensorFlow book, you'll be able to confidently tackle a wide range of computer vision problems using TensorFlow 2.x. What you will learnUnderstand how to detect objects using state-of-the-art models such as YOLOv3Use AutoML to predict gender and age from imagesSegment images using different approaches such as FCNs and generative modelsLearn how to improve your network's performance using rank-N accuracy, label smoothing, and test time augmentationEnable machines to recognize people's emotions in videos and real-time streamsAccess and reuse advanced TensorFlow Hub models to perform image classification and object detectionGenerate captions for images using CNNs and RNNsWho this book is for This book is for computer vision developers and engineers, as well as deep learning practitioners looking for go-to solutions to various problems that commonly arise in computer vision. You will discover how to employ modern machine learning (ML) techniques and deep learning architectures to perform a plethora of computer vision tasks. Basic knowledge of Python programming and computer vision is required.



Applied Deep Learning With Keras


Applied Deep Learning With Keras
DOWNLOAD
Author : Ritesh Bhagwat
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-24

Applied Deep Learning With Keras written by Ritesh Bhagwat and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-24 with Computers categories.


Take your neural networks to a whole new level with the simplicity and modularity of Keras, the most commonly used high-level neural networks API. Key FeaturesSolve complex machine learning problems with precisionEvaluate, tweak, and improve your deep learning models and solutionsUse different types of neural networks to solve real-world problemsBook Description Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks. What you will learnUnderstand the difference between single-layer and multi-layer neural network modelsUse Keras to build simple logistic regression models, deep neural networks, recurrent neural networks, and convolutional neural networksApply L1, L2, and dropout regularization to improve the accuracy of your modelImplement cross-validate using Keras wrappers with scikit-learnUnderstand the limitations of model accuracyWho this book is for If you have basic knowledge of data science and machine learning and want to develop your skills and learn about artificial neural networks and deep learning, you will find this book useful. Prior experience of Python programming and experience with statistics and logistic regression will help you get the most out of this book. Although not necessary, some familiarity with the scikit-learn library will be an added bonus.



Deep Learning For Beginners


Deep Learning For Beginners
DOWNLOAD
Author : Dr. Pablo Rivas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-09-18

Deep Learning For Beginners written by Dr. Pablo Rivas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-18 with Computers categories.


Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow Key FeaturesUnderstand the fundamental machine learning concepts useful in deep learningLearn the underlying mathematical concepts as you implement deep learning models from scratchExplore easy-to-understand examples and use cases that will help you build a solid foundation in DLBook Description With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks. What you will learnImplement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasksExplore the role of convolutional neural networks (CNNs) in computer vision and signal processingDiscover the ethical implications of deep learning modelingUnderstand the mathematical terminology associated with deep learningCode a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent spaceImplement visualization techniques to compare AEs and VAEsWho this book is for This book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.



Codeless Deep Learning With Knime


Codeless Deep Learning With Knime
DOWNLOAD
Author : Kathrin Melcher
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-11-27

Codeless Deep Learning With Knime written by Kathrin Melcher and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-27 with Computers categories.


Discover how to integrate KNIME Analytics Platform with deep learning libraries to implement artificial intelligence solutions Key FeaturesBecome well-versed with KNIME Analytics Platform to perform codeless deep learningDesign and build deep learning workflows quickly and more easily using the KNIME GUIDiscover different deployment options without using a single line of code with KNIME Analytics PlatformBook Description KNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It’ll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems. Starting with an introduction to KNIME Analytics Platform, you’ll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You’ll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you’ll learn how to prepare data, encode incoming data, and apply best practices. By the end of this book, you’ll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network. What you will learnUse various common nodes to transform your data into the right structure suitable for training a neural networkUnderstand neural network techniques such as loss functions, backpropagation, and hyperparametersPrepare and encode data appropriately to feed it into the networkBuild and train a classic feedforward networkDevelop and optimize an autoencoder network for outlier detectionImplement deep learning networks such as CNNs, RNNs, and LSTM with the help of practical examplesDeploy a trained deep learning network on real-world dataWho this book is for This book is for data analysts, data scientists, and deep learning developers who are not well-versed in Python but want to learn how to use KNIME GUI to build, train, test, and deploy neural networks with different architectures. The practical implementations shown in the book do not require coding or any knowledge of dedicated scripts, so you can easily implement your knowledge into practical applications. No prior experience of using KNIME is required to get started with this book.



Applied Machine Learning And Ai For Engineers


Applied Machine Learning And Ai For Engineers
DOWNLOAD
Author : Jeff Prosise
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-11-10

Applied Machine Learning And Ai For Engineers written by Jeff Prosise and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-10 with Computers categories.


While many introductory guides to AI are calculus books in disguise, this one mostly eschews the math. Instead, author Jeff Prosise helps engineers and software developers build an intuitive understanding of AI to solve business problems. Need to create a system to detect the sounds of illegal logging in the rainforest, analyze text for sentiment, or predict early failures in rotating machinery? This practical book teaches you the skills necessary to put AI and machine learning to work at your company. Applied Machine Learning and AI for Engineers provides examples and illustrations from the AI and ML course Prosise teaches at companies and research institutions worldwide. There's no fluff and no scary equations—just a fast start for engineers and software developers, complete with hands-on examples. This book helps you: Learn what machine learning and deep learning are and what they can accomplish Understand how popular learning algorithms work and when to apply them Build machine learning models in Python with Scikit-Learn, and neural networks with Keras and TensorFlow Train and score regression models and binary and multiclass classification models Build facial recognition models and object detection models Build language models that respond to natural-language queries and translate text to other languages Use Cognitive Services to infuse AI into the apps that you write



Applied Machine Learning And Deep Learning Architectures And Techniques


Applied Machine Learning And Deep Learning Architectures And Techniques
DOWNLOAD
Author : Nitin Liladhar Rane
language : en
Publisher: Deep Science Publishing
Release Date : 2024-10-13

Applied Machine Learning And Deep Learning Architectures And Techniques written by Nitin Liladhar Rane and has been published by Deep Science Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-13 with Computers categories.


This book provides an extensive overview of recent advances in machine learning (ML) and deep learning (DL). It starts with a comprehensive introduction to the latest architectural and design practices, with an overview of basic techniques and optimization algorithms and methodologies that are fundamental to modern ML/DL development followed by the tools and frameworks that are driving innovation in ML/DL. The presentation then points to the central position of ML and DL in developing generative AI like ChatGPT. Then look at different industrial applications such as explaining the real-world impacts of each. This includes challenges around corroborate artificial Intelligence (AI), and trustworthy AI, and so on. Finally, the book presents a futuristic vision on the potentials and implications of future ML and DL architectures, making it an ideal guide for researchers, practitioners and industry professionals. This book will be a significant resource for comprehending present advancements, addressing encounter challenges, and traversing the ML and DL landscape in future, making it an indispensable reference for anyone interested in applying these technologies across sectors.



Advances In Deep Learning And Computer Vision


Advances In Deep Learning And Computer Vision
DOWNLOAD
Author : Dr. Jagadeesh Kumar
language : en
Publisher: Xoffencerpublication
Release Date : 2024-12-18

Advances In Deep Learning And Computer Vision written by Dr. Jagadeesh Kumar and has been published by Xoffencerpublication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-18 with Computers categories.


Computer Vision (CV) can be defined as “the hypothesis and innovation for building artificial frameworks that acquire data from pictures or multi-dimensional information.” A more straightforward clarification is that computer vision endeavors to take care of similar issues you can unravel with your own one of kind eyes. For instance, in case you're driving and you see a kid run into the street, your mind will rapidly translate the kid in the street in front of you, that it's perilous, and that you ought to quickly brake to abstain from hitting the kid. That is one of the issues self-driving vehicle engineers are presently striving to comprehend by the methods of computer vision. The method requires being competent of realizing object recognition, which can be subdivided into three varieties: object classification, identification, and detection. Object Classification is everywhere you have a little recently learned objects that you need to have the option to perceive in a picture. Characterizing a representation photograph as having individual's face in it is a model object classification, arranged that this photograph contains a face in it. Object Identification is the recognition of a specific instance of an object. For example, being able to identify that there are two faces in an image and that one is John and the other is Sarah is an example of object identification. Object Detection is the ability to identify that there’s an object in an image. This is typically used for things like automatic toll roads where you want to know when a new object has entered the frame so you can take a scan the license plate. Connecting this to the self-driving car problem, if you think to how the human brain would solve this problem, it would have to answer the same questions: In order for the situation to be dangerous, we would have to both identify that there is a child (object) in or approaching the road. Identify that the child in the road is something that we should avoid. You would also want to identify other objects, like trash, soccer ball, bike, etc., where you don’t necessarily need evasive action. In other words, Computer Vision is the field of study that seeks to develop techniques to help computers “see” and understand the content of digital images such as photographs and videos. The problem of computer vision appears simple because it is trivially solved by people, even very young children. Nevertheless, it largely remains an unsolved problem based both on the limited understanding of biological vision and because of the complexity of vision perception in a dynamic and nearly infinitely varying physical world.