The Data Science Path

DOWNLOAD
Download The Data Science Path PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Data Science Path book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Big Data
DOWNLOAD
Author : Viktor Mayer-Schonberger
language : en
Publisher: Hachette UK
Release Date : 2013-03-14
Big Data written by Viktor Mayer-Schonberger and has been published by Hachette UK this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Business & Economics categories.
New and expanded edition. An International Bestseller - Over One Million Copies Sold! Shortlisted for the Financial Times/Goldman Sachs Business Book of the Year Award. Since Aristotle, we have fought to understand the causes behind everything. But this ideology is fading. In the age of big data, we can crunch an incomprehensible amount of information, providing us with invaluable insights about the what rather than the why. We're just starting to reap the benefits: tracking vital signs to foresee deadly infections, predicting building fires, anticipating the best moment to buy a plane ticket, seeing inflation in real time and monitoring social media in order to identify trends. But there is a dark side to big data. Will it be machines, rather than people, that make the decisions? How do you regulate an algorithm? What will happen to privacy? Will individuals be punished for acts they have yet to commit? In this groundbreaking and fascinating book, two of the world's most-respected data experts reveal the reality of a big data world and outline clear and actionable steps that will equip the reader with the tools needed for this next phase of human evolution.
The Data Science Path
DOWNLOAD
Author : Pasquale De Marco
language : en
Publisher: Pasquale De Marco
Release Date : 2025-07-14
The Data Science Path written by Pasquale De Marco and has been published by Pasquale De Marco this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-14 with Computers categories.
In the rapidly evolving world of data, "The Data Science Path" emerges as an invaluable guide for aspiring data scientists, business professionals, and anyone seeking to harness the power of data. This comprehensive book provides a structured and accessible roadmap to understanding the fundamentals of data science, empowering you to transform raw data into actionable insights. Embark on a journey through the chapters of this book, and you will: * Gain a solid foundation in the principles and methodologies that underpin data science, enabling you to approach data-driven problems with confidence. * Master the art of data wrangling, learning how to effectively organize, clean, and prepare data for analysis, ensuring its integrity and reliability. * Explore a wide range of data visualization techniques, gaining the ability to communicate complex data insights clearly and persuasively, making them accessible to both technical and non-technical audiences. * Delve into the realm of machine learning algorithms, both supervised and unsupervised, discovering how to build predictive models and extract meaningful patterns from data, unlocking its hidden potential. * Learn about the latest advancements and best practices in data science, staying at the forefront of this dynamic field and gaining the skills necessary to thrive in the data-driven economy. With its comprehensive coverage of essential topics, coupled with real-world examples, hands-on exercises, and thought-provoking case studies, "The Data Science Path" is your indispensable companion on the journey to becoming a proficient data scientist. Its clear and engaging writing style makes complex concepts approachable, empowering you to unlock the full potential of data and drive informed decision-making in a world increasingly shaped by information. If you like this book, write a review!
Data Mining Cookbook
DOWNLOAD
Author : Olivia Parr Rud
language : en
Publisher: John Wiley & Sons
Release Date : 2001-06-01
Data Mining Cookbook written by Olivia Parr Rud and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-01 with Computers categories.
Increase profits and reduce costs by utilizing this collection of models of the most commonly asked data mining questions In order to find new ways to improve customer sales and support, and as well as manage risk, business managers must be able to mine company databases. This book provides a step-by-step guide to creating and implementing models of the most commonly asked data mining questions. Readers will learn how to prepare data to mine, and develop accurate data mining questions. The author, who has over ten years of data mining experience, also provides actual tested models of specific data mining questions for marketing, sales, customer service and retention, and risk management. A CD-ROM, sold separately, provides these models for reader use.
Data Science In Education Using R
DOWNLOAD
Author : Ryan A. Estrellado
language : en
Publisher: Routledge
Release Date : 2020-10-26
Data Science In Education Using R written by Ryan A. Estrellado and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-26 with Education categories.
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
Introduction To Data Science
DOWNLOAD
Author : Rafael A. Irizarry
language : en
Publisher: CRC Press
Release Date : 2019-11-12
Introduction To Data Science written by Rafael A. Irizarry and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-12 with Mathematics categories.
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. A complete solutions manual is available to registered instructors who require the text for a course.
Getting Started With Data Science
DOWNLOAD
Author : Murtaza Haider
language : en
Publisher: IBM Press
Release Date : 2015-12-14
Getting Started With Data Science written by Murtaza Haider and has been published by IBM Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-14 with Business & Economics categories.
Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon.
Microsoft Sql Server 2012 T Sql Fundamentals
DOWNLOAD
Author : Itzik Ben-Gan
language : en
Publisher: Pearson Education
Release Date : 2012-07-15
Microsoft Sql Server 2012 T Sql Fundamentals written by Itzik Ben-Gan and has been published by Pearson Education this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-15 with Computers categories.
Gain a solid understanding of T-SQL—and write better queries Master the fundamentals of Transact-SQL—and develop your own code for querying and modifying data in Microsoft SQL Server 2012. Led by a SQL Server expert, you’ll learn the concepts behind T-SQL querying and programming, and then apply your knowledge with exercises in each chapter. Once you understand the logic behind T-SQL, you’ll quickly learn how to write effective code—whether you’re a programmer or database administrator. Discover how to: Work with programming practices unique to T-SQL Create database tables and define data integrity Query multiple tables using joins and subqueries Simplify code and improve maintainability with table expressions Implement insert, update, delete, and merge data modification strategies Tackle advanced techniques such as window functions, pivoting and grouping sets Control data consistency using isolation levels, and mitigate deadlocks and blocking Take T-SQL to the next level with programmable objects
Advanced Data Science And Analytics With Python
DOWNLOAD
Author : Jesus Rogel-Salazar
language : en
Publisher: CRC Press
Release Date : 2020-05-05
Advanced Data Science And Analytics With Python written by Jesus Rogel-Salazar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-05 with Business & Economics categories.
Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications. Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science Uses Python throughout Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs Focuses on the practical use of the tools rather than on lengthy explanations Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app. About the Author Dr. Jesús Rogel-Salazar is a lead data scientist in the field, working for companies such as Tympa Health Technologies, Barclays, AKQA, IBM Data Science Studio and Dow Jones. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK.
Applied Data Science
DOWNLOAD
Author : Martin Braschler
language : en
Publisher: Springer
Release Date : 2019-06-13
Applied Data Science written by Martin Braschler and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-13 with Computers categories.
This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science:first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
Think Like A Data Scientist
DOWNLOAD
Author : Brian Godsey
language : en
Publisher: Simon and Schuster
Release Date : 2017-03-09
Think Like A Data Scientist written by Brian Godsey and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-09 with Computers categories.
Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away