The Natural Language For Artificial Intelligence

DOWNLOAD
Download The Natural Language For Artificial Intelligence PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Natural Language For Artificial Intelligence book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Natural Language Processing
DOWNLOAD
Author : Yue Zhang
language : en
Publisher: Cambridge University Press
Release Date : 2021-01-07
Natural Language Processing written by Yue Zhang and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-07 with Computers categories.
This undergraduate textbook introduces essential machine learning concepts in NLP in a unified and gentle mathematical framework.
The Natural Language For Artificial Intelligence
DOWNLOAD
Author : Dioneia Motta Monte-Serrat
language : en
Publisher: Elsevier
Release Date : 2021-04-06
The Natural Language For Artificial Intelligence written by Dioneia Motta Monte-Serrat and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-06 with Computers categories.
The Natural Language for Artificial Intelligence presents natural language as the next frontier because it identifies something that is most sought after by scholars: The universal structure of language that gives rise to the respective universal algorithm. In short, this book presents the biological and logical structure typical of human language in its dynamic mediating process between reality and the human mind that, at the same time, interprets the context of reality. It is a non-static approach to natural language, which is defined as a complex system whose parts interact with the ability to generate a new quality of behavior and whose dynamic elements are mapped in order to be understood and executed by intelligent systems, guiding the paradigms of cognitive computing. The book explains linguistic functioning in the dynamic process of human cognition when forming meaning. After that, an approach to artificial intelligence (AI) is outlined, which works with a more restricted concept of natural language, leading to flaws and ambiguities. Subsequently, the characteristics of natural language and patterns of how it behaves in different branches of science are revealed, to indicate ways to improve the development of AI in specific fields of science. A brief description of the universal structure of language is also presented as an algorithmic model to be followed in the development of AI. Since AI aims to imitate the process of the human mind, the book shows how the cross-fertilization between natural language and AI should be done using the logical-axiomatic structure of natural language adjusted to the logical-mathematical processes of the machine.
Applied Natural Language Processing With Python
DOWNLOAD
Author : Taweh Beysolow II
language : en
Publisher: Apress
Release Date : 2018-09-12
Applied Natural Language Processing With Python written by Taweh Beysolow II and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-12 with Computers categories.
Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment. What You Will Learn Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and Gensim Manipulate and preprocess raw text data in formats such as .txt and .pdf Strengthen your skills in data science by learning both the theory and the application of various algorithms Who This Book Is For You should be at least a beginner in ML to get the most out of this text, but you needn’t feel that you need be an expert to understand the content.
Artificial Intelligence And Natural Language
DOWNLOAD
Author : Dmitry Ustalov
language : en
Publisher: Springer Nature
Release Date : 2019-11-13
Artificial Intelligence And Natural Language written by Dmitry Ustalov and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-13 with Computers categories.
This book constitutes the refereed proceedings of the 8th Conference on Artificial Intelligence and Natural Language, AINL 2019, held in Tartu, Estonia, in November 2019. The 10 revised full papers and 2 short papers were carefully reviewed and selected from 34 submissions. The papers are organized according to the following topics: data acquisition and annotation; human-computer interaction; statistical natural language processing; neural language models.
Natural Language Processing In Artificial Intelligence
DOWNLOAD
Author : Brojo Kishore Mishra
language : en
Publisher: Apple Academic Press
Release Date : 2022-06
Natural Language Processing In Artificial Intelligence written by Brojo Kishore Mishra and has been published by Apple Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06 with categories.
Natural Language Processing in Artificial Intelligence, focuses on natural language processing, artificial intelligence, and allied areas. The book delves into natural language processing, which enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world.
The Natural Language For Artificial Intelligence
DOWNLOAD
Author : Dioneia Motta Monte-Serrat
language : en
Publisher: Academic Press
Release Date : 2021-03-28
The Natural Language For Artificial Intelligence written by Dioneia Motta Monte-Serrat and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-28 with Computers categories.
The Natural Language for Artificial Intelligence presents the biological and logical structure typical of human language in its dynamic mediating process between reality and the human mind. The book explains linguistic functioning in the dynamic process of human cognition when forming meaning. After that, an approach to artificial intelligence (AI) is outlined, which works with a more restricted concept of natural language that leads to flaws and ambiguities. Subsequently, the characteristics of natural language and patterns of how it behaves in different branches of science are revealed to indicate ways to improve the development of AI in specific fields of science. A brief description of the universal structure of language is also presented as an algorithmic model to be followed in the development of AI. Since AI aims to imitate the process of the human mind, the book shows how the cross-fertilization between natural language and AI should be done using the logical-axiomatic structure of natural language adjusted to the logical-mathematical processes of the machine. - Presents a comprehensive approach to natural language and its inherent and complex dynamics - Develops language content as the next frontier, identifying the universal structure of language as a common structure that appears in both AI and cognitive computing - Explains the standard structure present in cognition and AI, making them interchangeable - Offers examples of the application of the universal language model in image analysis and conventional language
Deep Learning In Natural Language Processing
DOWNLOAD
Author : Li Deng
language : en
Publisher:
Release Date : 2018
Deep Learning In Natural Language Processing written by Li Deng and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Artificial Intelligence (incl. Robotics) categories.
In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.
Introduction To Natural Language Processing
DOWNLOAD
Author : Jacob Eisenstein
language : en
Publisher: MIT Press
Release Date : 2019-10-01
Introduction To Natural Language Processing written by Jacob Eisenstein and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-01 with Computers categories.
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.
Representation Learning For Natural Language Processing
DOWNLOAD
Author : Zhiyuan Liu
language : en
Publisher: Springer Nature
Release Date : 2020-07-03
Representation Learning For Natural Language Processing written by Zhiyuan Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-03 with Computers categories.
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Foundations Of Statistical Natural Language Processing
DOWNLOAD
Author : Christopher Manning
language : en
Publisher: MIT Press
Release Date : 1999-05-28
Foundations Of Statistical Natural Language Processing written by Christopher Manning and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-05-28 with Language Arts & Disciplines categories.
Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.