[PDF] Tools And Problems In Partial Differential Equations - eBooks Review

Tools And Problems In Partial Differential Equations


Tools And Problems In Partial Differential Equations
DOWNLOAD

Download Tools And Problems In Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tools And Problems In Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Tools And Problems In Partial Differential Equations


Tools And Problems In Partial Differential Equations
DOWNLOAD
Author : Thomas Alazard
language : en
Publisher: Springer Nature
Release Date : 2020-10-19

Tools And Problems In Partial Differential Equations written by Thomas Alazard and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-19 with Mathematics categories.


This textbook offers a unique learning-by-doing introduction to the modern theory of partial differential equations. Through 65 fully solved problems, the book offers readers a fast but in-depth introduction to the field, covering advanced topics in microlocal analysis, including pseudo- and para-differential calculus, and the key classical equations, such as the Laplace, Schrödinger or Navier-Stokes equations. Essentially self-contained, the book begins with problems on the necessary tools from functional analysis, distributions, and the theory of functional spaces, and in each chapter the problems are preceded by a summary of the relevant results of the theory. Informed by the authors' extensive research experience and years of teaching, this book is for graduate students and researchers who wish to gain real working knowledge of the subject.



Principles Of Partial Differential Equations


Principles Of Partial Differential Equations
DOWNLOAD
Author : Alexander Komech
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-10-05

Principles Of Partial Differential Equations written by Alexander Komech and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-05 with Mathematics categories.


This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.



Petsc For Partial Differential Equations Numerical Solutions In C And Python


Petsc For Partial Differential Equations Numerical Solutions In C And Python
DOWNLOAD
Author : Ed Bueler
language : en
Publisher: SIAM
Release Date : 2020-10-22

Petsc For Partial Differential Equations Numerical Solutions In C And Python written by Ed Bueler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-22 with Mathematics categories.


The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.



Finite Difference Methods For Ordinary And Partial Differential Equations


Finite Difference Methods For Ordinary And Partial Differential Equations
DOWNLOAD
Author : Randall J. LeVeque
language : en
Publisher: SIAM
Release Date : 2007-01-01

Finite Difference Methods For Ordinary And Partial Differential Equations written by Randall J. LeVeque and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.


This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.



Applied Partial Differential Equations


Applied Partial Differential Equations
DOWNLOAD
Author : Peter Markowich
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-06

Applied Partial Differential Equations written by Peter Markowich and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-06 with Mathematics categories.


This book presents topics of science and engineering which occur in nature or are part of daily life. It describes phenomena which are modelled by partial differential equations, relating to physical variables like mass, velocity and energy, etc. to their spatial and temporal variations. The author has chosen topics representing his career-long interests, including the flow of fluids and gases, granular flows, biological processes like pattern formation on animal skins, kinetics of rarified gases and semiconductor devices. Each topic is presented in its scientific or engineering context, followed by an introduction of applicable mathematical models in the form of partial differential equations.



Partial Differential Equations In Action


Partial Differential Equations In Action
DOWNLOAD
Author : Sandro Salsa
language : en
Publisher:
Release Date : 2015

Partial Differential Equations In Action written by Sandro Salsa and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.


This textbook presents problems and exercises at various levels of difficulty in the following areas: Classical Methods in PDEs (diffusion, waves, transport, potential equations); Basic Functional Analysis and Distribution Theory; Variational Formulation of Elliptic Problems; and Weak Formulation for Parabolic Problems and for the Wave Equation. Thanks to the broad variety of exercises with complete solutions, it can be used in all basic and advanced PDE courses.



An Introduction To Partial Differential Equations


An Introduction To Partial Differential Equations
DOWNLOAD
Author : Michael Renardy
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-18

An Introduction To Partial Differential Equations written by Michael Renardy and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Mathematics categories.


Partial differential equations are fundamental to the modeling of natural phenomena, arising in every field of science. Consequently, the desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians; it has inspired such diverse fields as complex function theory, functional analysis and algebraic topology. Like algebra, topology, and rational mechanics, partial differential equations are a core area of mathematics. This book aims to provide the background necessary to initiate work on a Ph.D. thesis in PDEs for beginning graduate students. Prerequisites include a truly advanced calculus course and basic complex variables. Lebesgue integration is needed only in Chapter 10, and the necessary tools from functional analysis are developed within the course. The book can be used to teach a variety of different courses. This new edition features new problems throughout and the problems have been rearranged in each section from simplest to most difficult. New examples have also been added. The material on Sobolev spaces has been rearranged and expanded. A new section on nonlinear variational problems with "Young-measure" solutions appears. The reference section has also been expanded.



Ordinary And Partial Differential Equations


Ordinary And Partial Differential Equations
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-11-13

Ordinary And Partial Differential Equations written by Ravi P. Agarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-13 with Mathematics categories.


In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.



Implicit Partial Differential Equations


Implicit Partial Differential Equations
DOWNLOAD
Author : Bernard Dacorogna
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Implicit Partial Differential Equations written by Bernard Dacorogna and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Nonlinear partial differential equations has become one of the main tools of mod ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of functional analysis derived its inspiration from the study of linear pdes. In recent years, several mathematicians have investigated nonlinear equations, particularly those of the second order, both linear and nonlinear and either in divergence or nondivergence form. Quasilinear and fully nonlinear differential equations are relevant classes of such equations and have been widely examined in the mathematical literature. In this work we present a new family of differential equations called "implicit partial differential equations", described in detail in the introduction (c.f. Chapter 1). It is a class of nonlinear equations that does not include the family of fully nonlinear elliptic pdes. We present a new functional analytic method based on the Baire category theorem for handling the existence of almost everywhere solutions of these implicit equations. The results have been obtained for the most part in recent years and have important applications to the calculus of variations, nonlin ear elasticity, problems of phase transitions and optimal design; some results have not been published elsewhere.



Partial Differential Equations And Boundary Value Problems With Applications


Partial Differential Equations And Boundary Value Problems With Applications
DOWNLOAD
Author : Mark A. Pinsky
language : en
Publisher: American Mathematical Soc.
Release Date : 2011

Partial Differential Equations And Boundary Value Problems With Applications written by Mark A. Pinsky and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Mathematics categories.


Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.