[PDF] Two Dimensional Geometric Variational Problems - eBooks Review

Two Dimensional Geometric Variational Problems


Two Dimensional Geometric Variational Problems
DOWNLOAD

Download Two Dimensional Geometric Variational Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Two Dimensional Geometric Variational Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Two Dimensional Geometric Variational Problems


Two Dimensional Geometric Variational Problems
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher:
Release Date : 1991-03-29

Two Dimensional Geometric Variational Problems written by Jürgen Jost and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-03-29 with Mathematics categories.


This monograph treats variational problems for mappings from a surface equipped with a conformal structure into Euclidean space or a Riemannian manifold. Presents a general theory of such variational problems, proving existence and regularity theorems with particular conceptual emphasis on the geometric aspects of the theory and thorough investigation of the connections with complex analysis. Among the topics covered are: Plateau's problem, the regularity theory of solutions, a variational approach for obtaining various conformal representation theorems, a general existence theorem for harmonic mappings, and a new approach to Teichmuller theory via harmonic maps.



Lectures On Geometric Variational Problems


Lectures On Geometric Variational Problems
DOWNLOAD
Author : Seiki Nishikawa
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Lectures On Geometric Variational Problems written by Seiki Nishikawa and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


In this volume are collected notes of lectures delivered at the First In ternational Research Institute of the Mathematical Society of Japan. This conference, held at Tohoku University in July 1993, was devoted to geometry and global analysis. Subsequent to the conference, in answer to popular de mand from the participants, it was decided to publish the notes of the survey lectures. Written by the lecturers themselves, all experts in their respective fields, these notes are here presented in a single volume. It is hoped that they will provide a vivid account of the current research, from the introduc tory level up to and including the most recent results, and will indicate the direction to be taken by future researeh. This compilation begins with Jean-Pierre Bourguignon's notes entitled "An Introduction to Geometric Variational Problems," illustrating the gen eral framework of the field with many examples and providing the reader with a broad view of the current research. Following this, Kenji Fukaya's notes on "Geometry of Gauge Fields" are concerned with gauge theory and its applications to low-dimensional topology, without delving too deeply into technical detail. Special emphasis is placed on explaining the ideas of infi nite dimensional geometry that, in the literature, are often hidden behind rigorous formulations or technical arguments.



Riemannian Geometry And Geometric Analysis


Riemannian Geometry And Geometric Analysis
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-11-13

Riemannian Geometry And Geometric Analysis written by Jürgen Jost and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-13 with Mathematics categories.


Offering some of the topics of contemporary mathematical research, this fourth edition includes a systematic introduction to Kahler geometry and the presentation of additional techniques from geometric analysis.



Variational Problems In Riemannian Geometry


Variational Problems In Riemannian Geometry
DOWNLOAD
Author : Paul Baird
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06

Variational Problems In Riemannian Geometry written by Paul Baird and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book collects invited contributions by specialists in the domain of elliptic partial differential equations and geometric flows. There are introductory survey articles as well as papers presenting the latest research results. Among the topics covered are blow-up theory for second order elliptic equations; bubbling phenomena in the harmonic map heat flow; applications of scans and fractional power integrands; heat flow for the p-energy functional; Ricci flow and evolution by curvature of networks of curves in the plane.



Geometry V


Geometry V
DOWNLOAD
Author : Robert Osserman
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Geometry V written by Robert Osserman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function.



Variational Problems In Topology


Variational Problems In Topology
DOWNLOAD
Author : A.T. Fomenko
language : en
Publisher: Routledge
Release Date : 2019-06-21

Variational Problems In Topology written by A.T. Fomenko and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-21 with Mathematics categories.


Many of the modern variational problems of topology arise in different but overlapping fields of scientific study: mechanics, physics and mathematics. In this work, Professor Fomenko offers a concise and clear explanation of some of these problems (both solved and unsolved), using current methods of analytical topology. His book falls into three interrelated sections. The first gives an elementary introduction to some of the most important concepts of topology used in modern physics and mechanics: homology and cohomology, and fibration. The second investigates the significant role of Morse theory in modern aspects of the topology of smooth manifolds, particularly those of three and four dimensions. The third discusses minimal surfaces and harmonic mappings, and presents a number of classic physical experiments that lie at the foundations of modern understanding of multidimensional variational calculus. The author's skilful exposition of these topics and his own graphic illustrations give an unusual motivation to the theory expounded, and his work is recommended reading for specialists and non-specialists alike, involved in the fields of physics and mathematics at both undergraduate and graduate levels.



Minimal Surfaces


Minimal Surfaces
DOWNLOAD
Author : Ulrich Dierkes
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-16

Minimal Surfaces written by Ulrich Dierkes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-16 with Mathematics categories.


Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem andTomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.



An Introduction To Teichm Ller Spaces


An Introduction To Teichm Ller Spaces
DOWNLOAD
Author : Yoichi Imayoshi
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

An Introduction To Teichm Ller Spaces written by Yoichi Imayoshi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book offers an easy and compact access to the theory of TeichmA1/4ller spaces, starting from the most elementary aspects to the most recent developments, e.g. the role this theory plays with regard to string theory. TeichmA1/4ller spaces give parametrization of all the complex structures on a given Riemann surface. This subject is related to many different areas of mathematics including complex analysis, algebraic geometry, differential geometry, topology in two and three dimensions, Kleinian and Fuchsian groups, automorphic forms, complex dynamics, and ergodic theory. Recently, TeichmA1/4ller spaces have begun to play an important role in string theory. Imayoshi and Taniguchi have attempted to make the book as self-contained as possible. They present numerous examples and heuristic arguments in order to help the reader grasp the ideas of TeichmA1/4ller theory. The book will be an excellent source of information for graduate students and reserachers in complex analysis and algebraic geometry as well as for theoretical physicists working in quantum theory.



The Analysis Of Harmonic Maps And Their Heat Flows


The Analysis Of Harmonic Maps And Their Heat Flows
DOWNLOAD
Author : Fanghua Lin
language : en
Publisher: World Scientific
Release Date : 2008

The Analysis Of Harmonic Maps And Their Heat Flows written by Fanghua Lin and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.


This book contains the proceedings of the Fourth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on August 8-11, 2007. The Meeting focused on experimental tests of these fundamental symmetries and on important theoretical issues, including scenarios for possible relativity violations. Experimental subjects covered include: astrophysical observations, clock-comparison measurements, cosmological birefringence, electromagnetic resonant cavities, gravitational tests, matter interferometry, muon behavior, neutrino oscillations, oscillations and decays of neutral mesons, particle-antiparticle comparisons, post-Newtonian gravity, space-based missions, spectroscopy of hydrogen and antihydrogen, and spin-polarized matter.Theoretical topics covered include: physical effects at the level of the Standard Model, General Relativity, and beyond; the possible origins and mechanisms for Lorentz and CPT violations; and associated issues in field theory, particle physics, gravity, and string theory. The contributors consist of the leading experts in this very active research field.



Bosonic Strings A Mathematical Treatment


Bosonic Strings A Mathematical Treatment
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: American Mathematical Soc.
Release Date : 2001

Bosonic Strings A Mathematical Treatment written by Jürgen Jost and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.


This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmuller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and $D$-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.