Uncertainty Quantification

DOWNLOAD
Download Uncertainty Quantification PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Uncertainty Quantification book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Uncertainty Quantification
DOWNLOAD
Author : Ralph C. Smith
language : en
Publisher: SIAM
Release Date : 2013-12-02
Uncertainty Quantification written by Ralph C. Smith and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-02 with Science categories.
The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.
Uncertainty Quantification
DOWNLOAD
Author : Ralph C. Smith
language : en
Publisher: SIAM
Release Date : 2013-12-02
Uncertainty Quantification written by Ralph C. Smith and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-02 with Science categories.
The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.
Uncertainty Quantification
DOWNLOAD
Author : Christian Soize
language : en
Publisher: Springer
Release Date : 2017-04-24
Uncertainty Quantification written by Christian Soize and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-24 with Computers categories.
This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.
Uncertainty Quantification And Model Calibration
DOWNLOAD
Author : Jan Peter Hessling
language : en
Publisher: BoD – Books on Demand
Release Date : 2017-07-05
Uncertainty Quantification And Model Calibration written by Jan Peter Hessling and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-05 with Computers categories.
Uncertainty quantification may appear daunting for practitioners due to its inherent complexity but can be intriguing and rewarding for anyone with mathematical ambitions and genuine concern for modeling quality. Uncertainty quantification is what remains to be done when too much credibility has been invested in deterministic analyses and unwarranted assumptions. Model calibration describes the inverse operation targeting optimal prediction and refers to inference of best uncertain model estimates from experimental calibration data. The limited applicability of most state-of-the-art approaches to many of the large and complex calculations made today makes uncertainty quantification and model calibration major topics open for debate, with rapidly growing interest from both science and technology, addressing subtle questions such as credible predictions of climate heating.
Uncertainty Quantification And Predictive Computational Science
DOWNLOAD
Author : Ryan G. McClarren
language : en
Publisher: Springer
Release Date : 2018-11-23
Uncertainty Quantification And Predictive Computational Science written by Ryan G. McClarren and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-23 with Science categories.
This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.
Uncertainty Quantification In Nuclear Physics
DOWNLOAD
Author : Maria Piarulli
language : en
Publisher: Frontiers Media SA
Release Date : 2023-08-30
Uncertainty Quantification In Nuclear Physics written by Maria Piarulli and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-30 with Science categories.
Uncertainty Quantification In Scientific Computing
DOWNLOAD
Author : Andrew Dienstfrey
language : en
Publisher: Springer
Release Date : 2012-08-11
Uncertainty Quantification In Scientific Computing written by Andrew Dienstfrey and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-11 with Computers categories.
This book constitutes the refereed post-proceedings of the 10th IFIP WG 2.5 Working Conference on Uncertainty Quantification in Scientific Computing, WoCoUQ 2011, held in Boulder, CO, USA, in August 2011. The 24 revised papers were carefully reviewed and selected from numerous submissions. They are organized in the following topical sections: UQ need: risk, policy, and decision making, UQ theory, UQ tools, UQ practice, and hot topics. The papers are followed by the records of the discussions between the participants and the speaker.
Spectral Methods For Uncertainty Quantification
DOWNLOAD
Author : Olivier Le Maitre
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-03-11
Spectral Methods For Uncertainty Quantification written by Olivier Le Maitre and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-11 with Science categories.
This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.
Uncertainty Quantification In Laminated Composites
DOWNLOAD
Author : Sudip Dey
language : en
Publisher: CRC Press
Release Date : 2018-09-19
Uncertainty Quantification In Laminated Composites written by Sudip Dey and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-19 with Mathematics categories.
Over the last few decades, uncertainty quantification in composite materials and structures has gained a lot of attention from the research community as a result of industrial requirements. This book presents computationally efficient uncertainty quantification schemes following meta-model-based approaches for stochasticity in material and geometric parameters of laminated composite structures. Several metamodels have been studied and comparative results have been presented for different static and dynamic responses. Results for sensitivity analyses are provided for a comprehensive coverage of the relative importance of different material and geometric parameters in the global structural responses.
Uncertainty Quantification In Computational Fluid Dynamics And Aircraft Engines
DOWNLOAD
Author : Francesco Montomoli
language : en
Publisher: Springer
Release Date : 2018-06-21
Uncertainty Quantification In Computational Fluid Dynamics And Aircraft Engines written by Francesco Montomoli and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-21 with Technology & Engineering categories.
This book introduces design techniques developed to increase the safety of aircraft engines, and demonstrates how the application of stochastic methods can overcome problems in the accurate prediction of engine lift caused by manufacturing error. This in turn addresses the issue of achieving required safety margins when hampered by limits in current design and manufacturing methods. The authors show that avoiding the potential catastrophe generated by the failure of an aircraft engine relies on the prediction of the correct behaviour of microscopic imperfections. This book shows how to quantify the possibility of such failure, and that it is possible to design components that are inherently less risky and more reliable. This new, updated and significantly expanded edition gives an introduction to engine reliability and safety to contextualise this important issue, evaluates newly-proposed methods for uncertainty quantification as applied to jet engines. Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines will be of use to gas turbine manufacturers and designers as well as CFD practitioners, specialists and researchers. Graduate and final year undergraduate students in aerospace or mathematical engineering may also find it of interest.