[PDF] Variational Methods For Machine Learning With Applications To Deep Networks - eBooks Review

Variational Methods For Machine Learning With Applications To Deep Networks


Variational Methods For Machine Learning With Applications To Deep Networks
DOWNLOAD

Download Variational Methods For Machine Learning With Applications To Deep Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Variational Methods For Machine Learning With Applications To Deep Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Variational Methods For Machine Learning With Applications To Deep Networks


Variational Methods For Machine Learning With Applications To Deep Networks
DOWNLOAD
Author : Lucas Pinheiro Cinelli
language : en
Publisher: Springer Nature
Release Date : 2021-05-10

Variational Methods For Machine Learning With Applications To Deep Networks written by Lucas Pinheiro Cinelli and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-10 with Technology & Engineering categories.


This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning; Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes; Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.



Variational Methods For Machine Learning With Applications To Deep Networks


Variational Methods For Machine Learning With Applications To Deep Networks
DOWNLOAD
Author : Lucas Pinheiro Cinelli
language : en
Publisher:
Release Date : 2021

Variational Methods For Machine Learning With Applications To Deep Networks written by Lucas Pinheiro Cinelli and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning; Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes; Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.



Deep Learning


Deep Learning
DOWNLOAD
Author : Siddhartha Bhattacharyya
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2020-06-22

Deep Learning written by Siddhartha Bhattacharyya and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-22 with Computers categories.


This book focuses on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it provides an insight of deep neural networks in action with illustrative coding examples. Deep learning is a new area of machine learning research which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non-immediately related fields, for example between air pressure recordings and English words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems. Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g. classification) and/or unsupervised (e.g. pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition.



Variational Bayes Deep Neural Network


Variational Bayes Deep Neural Network
DOWNLOAD
Author : Zihuan Liu
language : en
Publisher:
Release Date : 2021

Variational Bayes Deep Neural Network written by Zihuan Liu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Electronic dissertations categories.


Bayesian neural networks (BNNs) have achieved state-of-the-art results in a wide range of tasks, especially in high dimensional data analysis, including image recognition, biomedical diagnosis and others. My thesis mainly focuses on high-dimensional data, including simulated data and brain images of Alzheimer's Disease. We develop variational Bayesian deep neural network (VBDNN) and Bayesian compressed neural network (BCNN) and discuss the related statistical theory and algorithmic implementations for predicting MCI-to-dementia conversion in multi-modal data from ADNI.The transition from mild cognitive impairment (MCI) to dementia is of great interest to clinical research on Alzheimer's disease (AD) and related dementias. This phenomenon also serves as a valuable data source for quantitative methodological researchers developing new approaches for classification. The development of VBDNN is motivated by an important biomedical engineering application, namely, building predictive tools for the transition from MCI to dementia. The predictors are multi-modal and may involve complex interactive relations. In Chapter 2, we numerically compare performance accuracy of logistic regression (LR) with support vector machine (SVM) in classifying MCI-to-dementia conversion. The results show that although SVM and other ML techniques are capable of relatively accurate classification, similar or higher accuracy can often be achieved by LR, mitigating SVM's necessity or value for many clinical researchers.Further, when faced with many potential features that could be used for classifying the transition, clinical researchers are often unaware of the relative value of different approaches for variable selection. Other than algorithmic feature selection techniques, manually trimming the list of potential predictor variables can also protect against over-fitting and also offers possible insight into why selected features are important to the model. We demonstrate how similar performance can be achieved using user-guided, clinically informed pre-selection versus algorithmic feature selection techniques. Besides LR and SVM, Bayesian deep neural network (BDNN) has quickly become the most popular machine learning classifier for prediction and classification with ADNI data. However, their Markov Chain Monte Carlo (MCMC) based implementation suffers from high computational cost, limiting this powerful technique in large-scale studies. Variational Bayes (VB) has emerged as a competitive alternative to overcome some of these computational issues. Although the VB is popular in machine learning, neither the computational nor the statistical properties are well understood for complex modeling such as neural networks. First, we model the VBDNN estimation methodology and characterize the prior distributions and the variational family for consistent Bayesian estimation (in Chapter 3). The thesis compares and contrasts the true posterior's consistency and contraction rates for a deep neural network-based classification and the corresponding variational posterior. Based on the complexity of the deep neural network (DNN), this thesis assesses the loss in classification accuracy due to VB's use and guidelines on the characterization of the prior distributions and the variational family. The difficulty of optimization associated with variational Bayes solution has been quantified as a function of the complexity of the DNN. Chapter 4 proposes using a BCNN that takes care of the large p small n problem by projecting the feature space onto a smaller dimensional space using a random projection matrix. In particular, for dimension reduction, we propose randomly compressed feature space instead of other popular dimension reduction techniques. We adopt a model averaging approach to pool information across multiple projections. As the main contribution, we propose the variation Bayes approach to simultaneously estimate both model weights and model-specific parameters. By avoiding using standard Monte Carlo Markov Chain and parallelizing across multiple compression, we reduce both computation and computer storage capacity dramatically with minimum loss in prediction accuracy. We provide theoretical and empirical justifications of our proposed methodology.



Advanced Deep Learning With Keras


Advanced Deep Learning With Keras
DOWNLOAD
Author : Rowel Atienza
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31

Advanced Deep Learning With Keras written by Rowel Atienza and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.


Understanding and coding advanced deep learning algorithms with the most intuitive deep learning library in existence Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement deep neural networks, autoencoders, GANs, VAEs, and deep reinforcement learning A wide study of GANs, including Improved GANs, Cross-Domain GANs, and Disentangled Representation GANs Book DescriptionRecent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.What you will learn Cutting-edge techniques in human-like AI performance Implement advanced deep learning models using Keras The building blocks for advanced techniques - MLPs, CNNs, and RNNs Deep neural networks – ResNet and DenseNet Autoencoders and Variational Autoencoders (VAEs) Generative Adversarial Networks (GANs) and creative AI techniques Disentangled Representation GANs, and Cross-Domain GANs Deep reinforcement learning methods and implementation Produce industry-standard applications using OpenAI Gym Deep Q-Learning and Policy Gradient Methods Who this book is for Some fluency with Python is assumed. As an advanced book, you'll be familiar with some machine learning approaches, and some practical experience with DL will be helpful. Knowledge of Keras or TensorFlow 1.x is not required but would be helpful.



Principles And Labs For Deep Learning


Principles And Labs For Deep Learning
DOWNLOAD
Author : Shih-Chia Huang
language : en
Publisher: Academic Press
Release Date : 2021-07-06

Principles And Labs For Deep Learning written by Shih-Chia Huang and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-06 with Science categories.


Principles and Labs for Deep Learning provides the knowledge and techniques needed to help readers design and develop deep learning models. Deep Learning techniques are introduced through theory, comprehensively illustrated, explained through the TensorFlow source code examples, and analyzed through the visualization of results. The structured methods and labs provided by Dr. Huang and Dr. Le enable readers to become proficient in TensorFlow to build deep Convolutional Neural Networks (CNNs) through custom APIs, high-level Keras APIs, Keras Applications, and TensorFlow Hub. Each chapter has one corresponding Lab with step-by-step instruction to help the reader practice and accomplish a specific learning outcome. Deep Learning has been successfully applied in diverse fields such as computer vision, audio processing, robotics, natural language processing, bioinformatics and chemistry. Because of the huge scope of knowledge in Deep Learning, a lot of time is required to understand and deploy useful, working applications, hence the importance of this new resource. Both theory lessons and experiments are included in each chapter to introduce the techniques and provide source code examples to practice using them. All Labs for this book are placed on GitHub to facilitate the download. The book is written based on the assumption that the reader knows basic Python for programming and basic Machine Learning. Introduces readers to the usefulness of neural networks and Deep Learning methods Provides readers with in-depth understanding of the architecture and operation of Deep Convolutional Neural Networks Demonstrates the visualization needed for designing neural networks Provides readers with an in-depth understanding of regression problems, binary classification problems, multi-category classification problems, Variational Auto-Encoder, Generative Adversarial Network, and Object detection



The Science Of Deep Learning


The Science Of Deep Learning
DOWNLOAD
Author : Iddo Drori
language : en
Publisher: Cambridge University Press
Release Date : 2022-08-18

The Science Of Deep Learning written by Iddo Drori and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-18 with Computers categories.


The Science of Deep Learning emerged from courses taught by the author that have provided thousands of students with training and experience for their academic studies, and prepared them for careers in deep learning, machine learning, and artificial intelligence in top companies in industry and academia. The book begins by covering the foundations of deep learning, followed by key deep learning architectures. Subsequent parts on generative models and reinforcement learning may be used as part of a deep learning course or as part of a course on each topic. The book includes state-of-the-art topics such as Transformers, graph neural networks, variational autoencoders, and deep reinforcement learning, with a broad range of applications. The appendices provide equations for computing gradients in backpropagation and optimization, and best practices in scientific writing and reviewing. The text presents an up-to-date guide to the field built upon clear visualizations using a unified notation and equations, lowering the barrier to entry for the reader. The accompanying website provides complementary code and hundreds of exercises with solutions.



Deep Learning For The Life Sciences


Deep Learning For The Life Sciences
DOWNLOAD
Author : Bharath Ramsundar
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-04-10

Deep Learning For The Life Sciences written by Bharath Ramsundar and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-10 with Science categories.


Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working



Machine Learning


Machine Learning
DOWNLOAD
Author : Sergios Theodoridis
language : en
Publisher: Academic Press
Release Date : 2020-02-19

Machine Learning written by Sergios Theodoridis and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-19 with Computers categories.


Machine Learning: A Bayesian and Optimization Perspective, 2nd edition, gives a unified perspective on machine learning by covering both pillars of supervised learning, namely regression and classification. The book starts with the basics, including mean square, least squares and maximum likelihood methods, ridge regression, Bayesian decision theory classification, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines, Bayesian inference with a focus on the EM algorithm and its approximate inference variational versions, Monte Carlo methods, probabilistic graphical models focusing on Bayesian networks, hidden Markov models and particle filtering. Dimensionality reduction and latent variables modelling are also considered in depth. This palette of techniques concludes with an extended chapter on neural networks and deep learning architectures. The book also covers the fundamentals of statistical parameter estimation, Wiener and Kalman filtering, convexity and convex optimization, including a chapter on stochastic approximation and the gradient descent family of algorithms, presenting related online learning techniques as well as concepts and algorithmic versions for distributed optimization. Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. Most of the chapters include typical case studies and computer exercises, both in MATLAB and Python. The chapters are written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as courses on sparse modeling, deep learning, and probabilistic graphical models. New to this edition: Complete re-write of the chapter on Neural Networks and Deep Learning to reflect the latest advances since the 1st edition. The chapter, starting from the basic perceptron and feed-forward neural networks concepts, now presents an in depth treatment of deep networks, including recent optimization algorithms, batch normalization, regularization techniques such as the dropout method, convolutional neural networks, recurrent neural networks, attention mechanisms, adversarial examples and training, capsule networks and generative architectures, such as restricted Boltzman machines (RBMs), variational autoencoders and generative adversarial networks (GANs). Expanded treatment of Bayesian learning to include nonparametric Bayesian methods, with a focus on the Chinese restaurant and the Indian buffet processes. Presents the physical reasoning, mathematical modeling and algorithmic implementation of each method Updates on the latest trends, including sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling Provides case studies on a variety of topics, including protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, and more



Pro Deep Learning With Tensorflow 2 0


Pro Deep Learning With Tensorflow 2 0
DOWNLOAD
Author : Santanu Pattanayak
language : en
Publisher: Apress
Release Date : 2023-01-01

Pro Deep Learning With Tensorflow 2 0 written by Santanu Pattanayak and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-01 with Computers categories.


This book builds upon the foundations established in its first edition, with updated chapters and the latest code implementations to bring it up to date with Tensorflow 2.0. Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. You’ll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, you’ll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE. Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications. What You Will Learn Understand full-stack deep learning using TensorFlow 2.0 Gain an understanding of the mathematical foundations of deep learning Deploy complex deep learning solutions in production using TensorFlow 2.0 Understand generative adversarial networks, graph attention networks, and GraphSAGE Who This Book Is For: Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts.