[PDF] Wireless Power Transmitter For Ultra Low Power Implantable Biomedical Devices - eBooks Review

Wireless Power Transmitter For Ultra Low Power Implantable Biomedical Devices


Wireless Power Transmitter For Ultra Low Power Implantable Biomedical Devices
DOWNLOAD

Download Wireless Power Transmitter For Ultra Low Power Implantable Biomedical Devices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Wireless Power Transmitter For Ultra Low Power Implantable Biomedical Devices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Wireless Power Transmitter For Ultra Low Power Implantable Biomedical Devices


Wireless Power Transmitter For Ultra Low Power Implantable Biomedical Devices
DOWNLOAD
Author : Alexandre Casadevall Nierga
language : en
Publisher:
Release Date : 2013

Wireless Power Transmitter For Ultra Low Power Implantable Biomedical Devices written by Alexandre Casadevall Nierga and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with categories.


[ANGLES] Here is presented a modest collaboration in a research project lead by Medical Devices Lab of NYU-Poly, whose goal is to design and build an implant to detect and block epileptic attacks. According to this, this developed work performs several essential parts to provide power at the implantable device, facing two main challenges: miniaturize the implantable device and maximize the efficiency of the wireless link. Following work starts analyzing what is the framework which makes the wireless link capable to transmit power from outside to inside the tissue. Once wireless link specs are determined, it is proposed to use a commercial chip to invert the DC voltage from a battery to AC signal, which is required for wireless transmitting. Finally, it goes deeper inside the brain IC designing a voltage regulator and an essential circuit to start up the system.



Wireless Biomedical Sensing


Wireless Biomedical Sensing
DOWNLOAD
Author : Vaishnavi Nattar Ranganathan
language : en
Publisher:
Release Date : 2018

Wireless Biomedical Sensing written by Vaishnavi Nattar Ranganathan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


This work addresses challenges in power delivery, efficient computation and communication to power-constrained wearable and implantable devices. We are surrounded today by over 25 billion smart devices, and this number is constantly increasing. Owing to the shrinking CMOS technology, some of these devices are so small that they can even be worn on the human body or implanted inside it. The sheer number of devices and their drastic minia- turization and integration into the human body posit two major challenges. First, how do we communicate with these numerous small devices? Second, how do we deliver power to them? The wearable or implantable nature of these smart devices only exacerbates these challenges. Since these devices are designed to be worn or implanted, they must be small, comfortable and, most importantly, safe to use. They must be small so that they are dis- crete when worn or can be implanted easily. They must be comfortable so that people can use them for extended periods of time for physiological monitoring, without the devices in- terfering with their normal lifestyle. Finally, they must not cause discomfort by overheating and operate at low power consumption so that they are safe to use. Traditionally, cables were used to power or communicate. However, with the proliferation of smart devices, tethering to communicate with or to recharge them is no longer a practical solution. Bluetooth technology allows some degree of wireless communication with smart devices, but it is a power-hungry technology and thus unsuited for implanted devices. Hence there is a need for reliable communication of data at low power levels. Batteries are currently the most prevalent option for power delivery, but are a less-than-ideal solution. While progress in CMOS technology has reduced size and power consumption of smart devices, the batteries used to power them are still large. With higher energy requirements, larger these batteries become. Even when rechargeable, these batteries have a diminishing eciency over their lifetime of about two to three years. Hence, they are not the best option for powering these billions of devices, especially when they are implanted in the body and need surgery for replacement. One of the solutions to make these devices untethered and battery free is to use wireless power transfer and low-power wireless communication. However, these smart devices used in diverse application have vastly dierent power requirements and communication data rates. Hence, it becomes dicult to standardize ways to wirelessly power and communicate with them. The wireless solutions presented here are applied to two different applications, one wearable and the other implantable, demonstrating the ability to serve diverse requirements. The first application includes a wearable sensing platform that operates with ultra-low power consumption to perform analog sensing of physiological signals and use backscatter communication, which is an ultra-low power communication method, to transmit sensed data. The total power consumption for sensing and communicating data to an external base station is as low as 35 [micro]W to 160 [micro]W. This modular wireless platform is battery- free and can be made in the form of an adhesive bandaid that can sense physiological parameters like heart rate, breathing rate and sense sounds to monitor health conditions. Thus it enables simple, continuous and seamless monitoring of health parameters while a person goes about their everyday tasks. The second application is an implantable platform that can record neural signals from the brain and process them locally to identify events in the signals that can trigger neural stimulations. The requirements for this implantable device are far more complex than the simple wearable application. The implants operate with several 100 mW of power consumption and need several Mbps data rates to transmit the recorded and processed data out to the user. To address the high power and high data rate requirements, this work presents a novel dual-band approach that supports wireless power delivery at high frequency (HF) and backscatter communication at ultra-high frequency (UHF). At the smart implantable device, the dual-band wireless system harvests energy from HF wireless signals while simultaneously communicating data using UHF backscatter. To localize the implant and deliver power to it, a novel low-overhead echolocation method is presented in this work. This method uses reflected parameters on a phased array of wireless power transmitters to locate the wireless device and deliver focussed power to it. The implantable platform is intended for use in two different application domains. First, in neural engineering research where neural interface devices are used to understand, record and map the brain function and to leverage them and develop brain-controlled technology like prosthetic limbs. Second, for treatment and rehabilitation of people suffering from spinal cord injury and chronic neural disorders. An implantable brain-computer-spinal interface (BCSI) is presented in this work, that records neural signals and processes them locally to extract intent. The decoded action intention can be used to trigger stimulation in the spinal cord to reanimate the paralyzed limb and perform the action. In addition, this device is developed as a low-power FPGA-based platform so that it is reconfigurable to enable research in closed-loop algorithms to understand and treat several other neural disorders. We expect that such wireless biomedical sensing can provide a better understanding of physiological parameters and enable treatment for chronic disorders.



Wireless Power Transfer For Combined Sensing And Stimulation In Implantable Biomedical Devices


Wireless Power Transfer For Combined Sensing And Stimulation In Implantable Biomedical Devices
DOWNLOAD
Author : Esmaeel Maghsoudloo
language : en
Publisher:
Release Date : 2018

Wireless Power Transfer For Combined Sensing And Stimulation In Implantable Biomedical Devices written by Esmaeel Maghsoudloo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson's disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source.



Wireless Power Supply For Implantable Biomedical Devices


Wireless Power Supply For Implantable Biomedical Devices
DOWNLOAD
Author : Ping Si
language : en
Publisher:
Release Date : 2008

Wireless Power Supply For Implantable Biomedical Devices written by Ping Si and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Electric current converters categories.




Wireless Power Transfer And Data Communication For Intracranial Neural Recording Applications


Wireless Power Transfer And Data Communication For Intracranial Neural Recording Applications
DOWNLOAD
Author : Kerim Türe
language : en
Publisher: Springer Nature
Release Date : 2020-03-04

Wireless Power Transfer And Data Communication For Intracranial Neural Recording Applications written by Kerim Türe and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-04 with Technology & Engineering categories.


This book describes new circuits and systems for implantable wireless neural monitoring systems and explains the design of a batteryless, remotely-powered implantable micro-system, designed for continuous neural monitoring. Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient remote powering and reliable data communication. Novel architecture and design methodologies are used for low power and small area wireless communication link. Additionally, hermetically sealed packaging and in-vivo validation of the implantable device is presented.



Wireless Power Transfer For Medical Microsystems


Wireless Power Transfer For Medical Microsystems
DOWNLOAD
Author : Tianjia Sun
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-12

Wireless Power Transfer For Medical Microsystems written by Tianjia Sun and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-12 with Technology & Engineering categories.


This book provides an in-depth introduction to the newest technologies for designing wireless power transfer systems for medical applications. The authors present a systematic classification of the various types of wireless power transfer, with a focus on inductive power coupling. Readers will learn to overcome many challenges faced in the design a wirelessly powered implant, such as power transfer efficiency, power stability, and the size of power antennas and circuits. This book focuses exclusively on medical applications of the technology and a batteryless capsule endoscopy system and other, real wirelessly powered systems are used as examples of the techniques described.



High Performance Wireless Power And Data Transfer Interface For Implantable Medical Devices


High Performance Wireless Power And Data Transfer Interface For Implantable Medical Devices
DOWNLOAD
Author : Seyed Abdollah Mirbozorgi
language : en
Publisher:
Release Date : 2015

High Performance Wireless Power And Data Transfer Interface For Implantable Medical Devices written by Seyed Abdollah Mirbozorgi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.


In recent years, there has been major progress on implantable biomedical systems that support most of the functionalities of wireless implantable devices. Nevertheless, these devices remain mostly restricted to be commercialized, in part due to weakness of a straightforward design to support the required functionalities, limitation on miniaturization, and lack of a reliable low-power high data rate interface between implants and external devices. This research provides novel strategies on the design of implantable biomedical devices that addresses these limitations by presenting analysis and techniques for wireless power transfer and efficient data transfer. The first part of this research includes our proposed novel resonance-based multicoil inductive power link structure with uniform power distribution to wirelessly power up smart animal research systems and implanted medical devices with high power efficiency and free positioning capability. The proposed structure consists of a multicoil resonance inductive link, which primary resonator array is made of several identical resonators enclosed in a scalable array of overlapping square coils that are connected in parallel and arranged in power surface (2D) and power chamber (3D) configurations. The proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution in 3D. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and eases its operation by avoiding the need for active detection of the load location and power control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a chamber size of 27×27×16 cm3. The second part of this research includes our proposed novel, fully-integrated, low-power fullduplex transceiver (FDT) to support bi-directional neural interfacing applications (stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier (LNA). The UWB 3.1-7 GHz transmitter using OOK and binary phase shift keying (BPSK) modulations at only 10.8 pJ/bit. The proposed FDT provides dual band 500 Mbps TX uplink data rate and 100 Mbps RX downlink data rate. It is fully integrated on standard TSMC 0.18 nm CMOS within a total size of 0.8 mm2. The total power consumption measured 10.4 mW (5 mW for RX and 5.4 mW for TX at the rate of 500 Mbps).



Ultra Low Voltage Frequency Synthesizer And Successive Approximation Analog To Digital Converter For Biomedical Applications


Ultra Low Voltage Frequency Synthesizer And Successive Approximation Analog To Digital Converter For Biomedical Applications
DOWNLOAD
Author : Chung-Chih Hung
language : en
Publisher: Springer Nature
Release Date : 2021-12-07

Ultra Low Voltage Frequency Synthesizer And Successive Approximation Analog To Digital Converter For Biomedical Applications written by Chung-Chih Hung and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-07 with Technology & Engineering categories.


This book introduces the origin of biomedical signals and the operating principles behind them and introduces the characteristics of common biomedical signals for subsequent signal measurement and judgment. Since biomedical signals are captured by wearable devices, sensor devices, or implanted devices, these devices are all battery-powered to maintain long working time. We hope to reduce their power consumption to extend service life, especially for implantable devices, because battery replacement can only be done through surgery. Therefore, we must understand how to design low-power integrated circuits. Both implantable and in-vitro medical signal detectors require two basic components to collect and transmit biomedical signals: an analog-to-digital converter and a frequency synthesizer because these measured biomedical signals are wirelessly transmitted to the relevant receiving unit. The core unit of wireless transmission is the frequency synthesizer, which provides a wide frequency range and stable frequency to demonstrate the quality and performance of the wireless transmitter. Therefore, the basic operating principle and model of the frequency synthesizer are introduced. We also show design examples and measurement results of a low-power low-voltage integer-N frequency synthesizer for biomedical applications. The detection of biomedical signals needs to be converted into digital signals by an analog-to-digital converter to facilitate subsequent signal processing and recognition. Therefore, the operating principle of the analog-to-digital converter is introduced. We also show implementation examples and measurement results of low-power low-voltage analog-to-digital converters for biomedical applications.



Antennas And Wireless Power Transfer Methods For Biomedical Applications


Antennas And Wireless Power Transfer Methods For Biomedical Applications
DOWNLOAD
Author : Yongxin Guo
language : en
Publisher: John Wiley & Sons
Release Date : 2024-03-14

Antennas And Wireless Power Transfer Methods For Biomedical Applications written by Yongxin Guo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-14 with Technology & Engineering categories.


Antennas and Wireless Power Transfer Methods for Biomedical Applications Join the cutting edge of biomedical technology with this essential reference The role of wireless communications in biomedical technology is a significant one. Wireless and antenna-driven communication between telemetry components now forms the basis of cardiac pacemakers and defibrillators, cochlear implants, glucose readers, and more. As wireless technology continues to advance and miniaturization progresses, it’s more essential than ever that biomedical research and development incorporate the latest technology. Antennas and Wireless Power Transfer Methods for Biomedical Applications provides a comprehensive introduction to wireless technology and its incorporation into the biomedical field. Beginning with an introduction to recent developments in antenna and wireless technology, it analyzes the major wireless systems currently available and their biomedical applications, actual and potential. The result is an essential guide to technologies that have already improved patient outcomes and increased life expectancies worldwide. Readers will also find: Authored by internationally renowned researchers of wireless technologies Detailed analysis of CP implantable antennas, wearable antennas, near-field wireless power, and more Up to 100 figures that supplement the text Antennas and Wireless Power Transfer Methods for Biomedical Applications is a valuable introduction for biomedical researchers and biomedical engineers, as well as for research and development professionals in the medical device industry.



Wireless Power Transmission On Biomedical Applications


Wireless Power Transmission On Biomedical Applications
DOWNLOAD
Author : Ting-Tse Lin
language : en
Publisher:
Release Date : 2020

Wireless Power Transmission On Biomedical Applications written by Ting-Tse Lin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Electronic books categories.


Wireless power transmission (WPT) can provide an alternative for wireless power in implantable medical devices (IMDs). The WPT in implantable medical devices will involve many emerging biomedical topics, such as implantable pacemakers, optogenetic devices, and bio-impedance sensors. To this end, this chapter comprehensively reviews the recent WPT studies for those mentioned above emerging biomedical applications. The specific key components are carried out for those applications. Besides, the operation principle and system design are presented. In conclusion, this chapter,Äôs significance can help evolve reliable implantable device development in the future.