[PDF] A Comprehensive Introduction To Sub Riemannian Geometry - eBooks Review

A Comprehensive Introduction To Sub Riemannian Geometry


A Comprehensive Introduction To Sub Riemannian Geometry
DOWNLOAD

Download A Comprehensive Introduction To Sub Riemannian Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Comprehensive Introduction To Sub Riemannian Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



A Comprehensive Introduction To Sub Riemannian Geometry


A Comprehensive Introduction To Sub Riemannian Geometry
DOWNLOAD
Author : Andrei Agrachev
language : en
Publisher: Cambridge University Press
Release Date : 2019-10-31

A Comprehensive Introduction To Sub Riemannian Geometry written by Andrei Agrachev and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-31 with Mathematics categories.


Provides a comprehensive and self-contained introduction to sub-Riemannian geometry and its applications. For graduate students and researchers.



Sub Riemannian Geometry


Sub Riemannian Geometry
DOWNLOAD
Author : André Bellaïche
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-09-26

Sub Riemannian Geometry written by André Bellaïche and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-09-26 with Mathematics categories.


Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: • control theory • classical mechanics • Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) • diffusion on manifolds • analysis of hypoelliptic operators • Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: • André Bellaïche: The tangent space in sub-Riemannian geometry • Mikhael Gromov: Carnot-Carathéodory spaces seen from within • Richard Montgomery: Survey of singular geodesics • Héctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers • Jean-Michel Coron: Stabilization of controllable systems



An Introduction To The Heisenberg Group And The Sub Riemannian Isoperimetric Problem


An Introduction To The Heisenberg Group And The Sub Riemannian Isoperimetric Problem
DOWNLOAD
Author : Luca Capogna
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-08

An Introduction To The Heisenberg Group And The Sub Riemannian Isoperimetric Problem written by Luca Capogna and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-08 with Mathematics categories.


This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.



New Trends In Sub Riemannian Geometry


New Trends In Sub Riemannian Geometry
DOWNLOAD
Author : Fabrice Baudoin
language : en
Publisher: American Mathematical Society
Release Date : 2025-01-27

New Trends In Sub Riemannian Geometry written by Fabrice Baudoin and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-27 with Mathematics categories.


This volume contains the proceedings of the AMS-EMS-SMF Special Session on Sub-Riemannian Geometry and Interactions, held from July 18–20, 2022, at the Université de Grenoble-Alpes, Grenoble, France. Sub-Riemannian geometry is a generalization of Riemannian one, where a smooth metric is defined only on a preferred subset of tangent directions. Under the so-called Hörmander condition, all points are connected by finite-length curves, giving rise to a well-defined metric space. Sub-Riemannian geometry is nowadays a lively branch of mathematics, connected with probability, harmonic and complex analysis, subelliptic PDEs, geometric measure theory, optimal transport, calculus of variations, and potential analysis. The articles in this volume present some developments of a broad range of topics in sub-Riemannian geometry, including the theory of sub-elliptic operators, holonomy, spectral theory, and the geometry of the exponential map.



Riemannian Geometry


Riemannian Geometry
DOWNLOAD
Author : Peter Petersen
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-11-24

Riemannian Geometry written by Peter Petersen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-24 with Mathematics categories.


This volume introduces techniques and theorems of Riemannian geometry, and opens the way to advanced topics. The text combines the geometric parts of Riemannian geometry with analytic aspects of the theory, and reviews recent research. The updated second edition includes a new coordinate-free formula that is easily remembered (the Koszul formula in disguise); an expanded number of coordinate calculations of connection and curvature; general fomulas for curvature on Lie Groups and submersions; variational calculus integrated into the text, allowing for an early treatment of the Sphere theorem using a forgotten proof by Berger; recent results regarding manifolds with positive curvature.



Riemannian Manifolds


Riemannian Manifolds
DOWNLOAD
Author : John M. Lee
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-06

Riemannian Manifolds written by John M. Lee and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-06 with Mathematics categories.


This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds. The author has selected a set of topics that can reasonably be covered in ten to fifteen weeks, instead of making any attempt to provide an encyclopedic treatment of the subject. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics,without which one cannot claim to be doing Riemannian geometry. It then introduces the Riemann curvature tensor, and quickly moves on to submanifold theory in order to give the curvature tensor a concrete quantitative interpretation. From then on, all efforts are bent toward proving the four most fundamental theorems relating curvature and topology: the Gauss–Bonnet theorem (expressing the total curvature of a surface in term so fits topological type), the Cartan–Hadamard theorem (restricting the topology of manifolds of nonpositive curvature), Bonnet’s theorem (giving analogous restrictions on manifolds of strictly positive curvature), and a special case of the Cartan–Ambrose–Hicks theorem (characterizing manifolds of constant curvature). Many other results and techniques might reasonably claim a place in an introductory Riemannian geometry course, but could not be included due to time constraints.



Sub Riemannian Geometry


Sub Riemannian Geometry
DOWNLOAD
Author : Andre Bellaiche
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06

Sub Riemannian Geometry written by Andre Bellaiche and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: control theory classical mechanics Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) diffusion on manifolds analysis of hypoelliptic operators Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: Andr Bellache: The tangent space in sub-Riemannian geometry Mikhael Gromov: Carnot-Carathodory spaces seen from within Richard Montgomery: Survey of singular geodesics Hctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers Jean-Michel Coron: Stabilization of controllable systems.



Introduction To Geometric Control


Introduction To Geometric Control
DOWNLOAD
Author : Yuri Sachkov
language : en
Publisher: Springer Nature
Release Date : 2022-07-02

Introduction To Geometric Control written by Yuri Sachkov and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-02 with Technology & Engineering categories.


This text is an enhanced, English version of the Russian edition, published in early 2021 and is appropriate for an introductory course in geometric control theory. The concise presentation provides an accessible treatment of the subject for advanced undergraduate and graduate students in theoretical and applied mathematics, as well as to experts in classic control theory for whom geometric methods may be introduced. Theory is accompanied by characteristic examples such as stopping a train, motion of mobile robot, Euler elasticae, Dido's problem, and rolling of the sphere on the plane. Quick foundations to some recent topics of interest like control on Lie groups and sub-Riemannian geometry are included. Prerequisites include only a basic knowledge of calculus, linear algebra, and ODEs; preliminary knowledge of control theory is not assumed. The applications problems-oriented approach discusses core subjects and encourages the reader to solve related challenges independently. Highly-motivated readers can acquire working knowledge of geometric control techniques and progress to studying control problems and more comprehensive books on their own. Selected sections provide exercises to assist in deeper understanding of the material. Controllability and optimal control problems are considered for nonlinear nonholonomic systems on smooth manifolds, in particular, on Lie groups. For the controllability problem, the following questions are considered: controllability of linear systems, local controllability of nonlinear systems, Nagano–Sussmann Orbit theorem, Rashevskii–Chow theorem, Krener's theorem. For the optimal control problem, Filippov's theorem is stated, invariant formulation of Pontryagin maximum principle on manifolds is given, second-order optimality conditions are discussed, and the sub-Riemannian problem is studied in detail. Pontryagin maximum principle is proved for sub-Riemannian problems, solution to the sub-Riemannian problems on the Heisenberggroup, the group of motions of the plane, and the Engel group is described.



Introduction To Differential Geometry


Introduction To Differential Geometry
DOWNLOAD
Author : Joel W. Robbin
language : en
Publisher: Springer Nature
Release Date : 2022-01-12

Introduction To Differential Geometry written by Joel W. Robbin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-12 with Mathematics categories.


This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.



Tunneling Estimates And Approximate Controllability For Hypoelliptic Equations


Tunneling Estimates And Approximate Controllability For Hypoelliptic Equations
DOWNLOAD
Author : Camille Laurent
language : en
Publisher: American Mathematical Society
Release Date : 2022-04-08

Tunneling Estimates And Approximate Controllability For Hypoelliptic Equations written by Camille Laurent and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-08 with Mathematics categories.


View the abstract.