Advanced Multivariate Statistics With Matrices

DOWNLOAD
Download Advanced Multivariate Statistics With Matrices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Multivariate Statistics With Matrices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advanced Multivariate Statistics With Matrices
DOWNLOAD
Author : Tõnu Kollo
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-30
Advanced Multivariate Statistics With Matrices written by Tõnu Kollo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-30 with Mathematics categories.
The book presents important tools and techniques for treating problems in m- ern multivariate statistics in a systematic way. The ambition is to indicate new directions as well as to present the classical part of multivariate statistical analysis in this framework. The book has been written for graduate students and statis- cians who are not afraid of matrix formalism. The goal is to provide them with a powerful toolkit for their research and to give necessary background and deeper knowledge for further studies in di?erent areas of multivariate statistics. It can also be useful for researchers in applied mathematics and for people working on data analysis and data mining who can ?nd useful methods and ideas for solving their problems. Ithasbeendesignedasatextbookforatwosemestergraduatecourseonmultiva- ate statistics. Such a course has been held at the Swedish Agricultural University in 2001/02. On the other hand, it can be used as material for series of shorter courses. In fact, Chapters 1 and 2 have been used for a graduate course ”Matrices in Statistics” at University of Tartu for the last few years, and Chapters 2 and 3 formed the material for the graduate course ”Multivariate Asymptotic Statistics” in spring 2002. An advanced course ”Multivariate Linear Models” may be based on Chapter 4. A lot of literature is available on multivariate statistical analysis written for di?- ent purposes and for people with di?erent interests, background and knowledge.
Matrices For Statistics
DOWNLOAD
Author : M. J. R. Healy
language : en
Publisher: Oxford University Press
Release Date : 2000
Matrices For Statistics written by M. J. R. Healy and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.
Michael Healy's concise introduction to matrix theory has been re-written and revised to take into account recent developments in statistical practice. The more difficult topics have been expanded and some explanations have been simplified.
Methods Of Multivariate Analysis
DOWNLOAD
Author : Alvin C. Rencher
language : en
Publisher: Wiley-Interscience
Release Date : 2002-03-07
Methods Of Multivariate Analysis written by Alvin C. Rencher and has been published by Wiley-Interscience this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-03-07 with Mathematics categories.
Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Methods of Multivariate Analysis was among those chosen. When measuring several variables on a complex experimental unit, it is often necessary to analyze the variables simultaneously, rather than isolate them and consider them individually. Multivariate analysis enables researchers to explore the joint performance of such variables and to determine the effect of each variable in the presence of the others. The Second Edition of Alvin Rencher's Methods of Multivariate Analysis provides students of all statistical backgrounds with both the fundamental and more sophisticated skills necessary to master the discipline. To illustrate multivariate applications, the author provides examples and exercises based on fifty-nine real data sets from a wide variety of scientific fields. Rencher takes a "methods" approach to his subject, with an emphasis on how students and practitioners can employ multivariate analysis in real-life situations. The Second Edition contains revised and updated chapters from the critically acclaimed First Edition as well as brand-new chapters on: Cluster analysis Multidimensional scaling Correspondence analysis Biplots Each chapter contains exercises, with corresponding answers and hints in the appendix, providing students the opportunity to test and extend their understanding of the subject. Methods of Multivariate Analysis provides an authoritative reference for statistics students as well as for practicing scientists and clinicians.
Matrix Algebra
DOWNLOAD
Author : James E. Gentle
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-06
Matrix Algebra written by James E. Gentle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-06 with Mathematics categories.
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. The first part of this book presents the relevant aspects of the theory of matrix algebra for applications in statistics. This part begins with the fundamental concepts of vectors and vector spaces, next covers the basic algebraic properties of matrices, then describes the analytic properties of vectors and matrices in the multivariate calculus, and finally discusses operations on matrices in solutions of linear systems and in eigenanalysis. This part is essentially self-contained. The second part of the book begins with a consideration of various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. The second part also describes some of the many applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. The brief coverage in this part illustrates the matrix theory developed in the first part of the book. The first two parts of the book can be used as the text for a course in matrix algebra for statistics students, or as a supplementary text for various courses in linear models or multivariate statistics. The third part of this book covers numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R/S-Plus or Matlab. This part of the book can be used as the text for a course in statistical computing, or as a supplementary text for various courses that emphasize computations. The book includes a large number of exercises with some solutions provided in an appendix.
Methodology And Applications Of Statistics
DOWNLOAD
Author : Barry C. Arnold
language : en
Publisher: Springer Nature
Release Date : 2022-01-04
Methodology And Applications Of Statistics written by Barry C. Arnold and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-04 with Mathematics categories.
Dedicated to one of the most outstanding researchers in the field of statistics, this volume in honor of C.R. Rao, on the occasion of his 100th birthday, provides a bird’s-eye view of a broad spectrum of research topics, paralleling C.R. Rao’s wide-ranging research interests. The book’s contributors comprise a representative sample of the countless number of researchers whose careers have been influenced by C.R. Rao, through his work or his personal aid and advice. As such, written by experts from more than 15 countries, the book’s original and review contributions address topics including statistical inference, distribution theory, estimation theory, multivariate analysis, hypothesis testing, statistical modeling, design and sampling, shape and circular analysis, and applications. The book will appeal to statistics researchers, theoretical and applied alike, and PhD students. Happy Birthday, C.R. Rao!
Aspects Of Multivariate Statistical Theory
DOWNLOAD
Author : Robb J. Muirhead
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-25
Aspects Of Multivariate Statistical Theory written by Robb J. Muirhead and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-25 with Mathematics categories.
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . . the wealth of material on statistics concerning the multivariate normal distribution is quite exceptional. As such it is a very useful source of information for the general statistician and a must for anyone wanting to penetrate deeper into the multivariate field." -Mededelingen van het Wiskundig Genootschap "This book is a comprehensive and clearly written text on multivariate analysis from a theoretical point of view." -The Statistician Aspects of Multivariate Statistical Theory presents a classical mathematical treatment of the techniques, distributions, and inferences based on multivariate normal distribution. Noncentral distribution theory, decision theoretic estimation of the parameters of a multivariate normal distribution, and the uses of spherical and elliptical distributions in multivariate analysis are introduced. Advances in multivariate analysis are discussed, including decision theory and robustness. The book also includes tables of percentage points of many of the standard likelihood statistics used in multivariate statistical procedures. This definitive resource provides in-depth discussion of the multivariate field and serves admirably as both a textbook and reference.
Statistical Inference For Models With Multivariate T Distributed Errors
DOWNLOAD
Author : A. K. Md. Ehsanes Saleh
language : en
Publisher: John Wiley & Sons
Release Date : 2014-10-01
Statistical Inference For Models With Multivariate T Distributed Errors written by A. K. Md. Ehsanes Saleh and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-01 with Mathematics categories.
This book summarizes the results of various models under normal theory with a brief review of the literature. Statistical Inference for Models with Multivariate t-Distributed Errors: Includes a wide array of applications for the analysis of multivariate observations Emphasizes the development of linear statistical models with applications to engineering, the physical sciences, and mathematics Contains an up-to-date bibliography featuring the latest trends and advances in the field to provide a collective source for research on the topic Addresses linear regression models with non-normal errors with practical real-world examples Uniquely addresses regression models in Student's t-distributed errors and t-models Supplemented with an Instructor's Solutions Manual, which is available via written request by the Publisher
Linear Models And The Relevant Distributions And Matrix Algebra
DOWNLOAD
Author : David A. Harville
language : en
Publisher: CRC Press
Release Date : 2018-03-22
Linear Models And The Relevant Distributions And Matrix Algebra written by David A. Harville and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-22 with Mathematics categories.
Linear Models and the Relevant Distributions and Matrix Algebra provides in-depth and detailed coverage of the use of linear statistical models as a basis for parametric and predictive inference. It can be a valuable reference, a primary or secondary text in a graduate-level course on linear models, or a resource used (in a course on mathematical statistics) to illustrate various theoretical concepts in the context of a relatively complex setting of great practical importance. Features: Provides coverage of matrix algebra that is extensive and relatively self-contained and does so in a meaningful context Provides thorough coverage of the relevant statistical distributions, including spherically and elliptically symmetric distributions Includes extensive coverage of multiple-comparison procedures (and of simultaneous confidence intervals), including procedures for controlling the k-FWER and the FDR Provides thorough coverage (complete with detailed and highly accessible proofs) of results on the properties of various linear-model procedures, including those of least squares estimators and those of the F test. Features the use of real data sets for illustrative purposes Includes many exercises David Harville served for 10 years as a mathematical statistician in the Applied Mathematics Research Laboratory of the Aerospace Research Laboratories at Wright-Patterson AFB, Ohio, 20 years as a full professor in Iowa State University’s Department of Statistics where he now has emeritus status, and seven years as a research staff member of the Mathematical Sciences Department of IBM’s T.J. Watson Research Center. He has considerable relevant experience, having taught M.S. and Ph.D. level courses in linear models, been the thesis advisor of 10 Ph.D. graduates, and authored or co-authored two books and more than 80 research articles. His work has been recognized through his election as a Fellow of the American Statistical Association and of the Institute of Mathematical Statistics and as a member of the International Statistical Institute.
Bilinear Regression Analysis
DOWNLOAD
Author : Dietrich von Rosen
language : en
Publisher: Springer
Release Date : 2018-08-02
Bilinear Regression Analysis written by Dietrich von Rosen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-02 with Mathematics categories.
This book expands on the classical statistical multivariate analysis theory by focusing on bilinear regression models, a class of models comprising the classical growth curve model and its extensions. In order to analyze the bilinear regression models in an interpretable way, concepts from linear models are extended and applied to tensor spaces. Further, the book considers decompositions of tensor products into natural subspaces, and addresses maximum likelihood estimation, residual analysis, influential observation analysis and testing hypotheses, where properties of estimators such as moments, asymptotic distributions or approximations of distributions are also studied. Throughout the text, examples and several analyzed data sets illustrate the different approaches, and fresh insights into classical multivariate analysis are provided. This monograph is of interest to researchers and Ph.D. students in mathematical statistics, signal processing and other fields where statistical multivariate analysis is utilized. It can also be used as a text for second graduate-level courses on multivariate analysis.
Multivariate Multilinear And Mixed Linear Models
DOWNLOAD
Author : Katarzyna Filipiak
language : en
Publisher: Springer Nature
Release Date : 2021-10-01
Multivariate Multilinear And Mixed Linear Models written by Katarzyna Filipiak and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-01 with Mathematics categories.
This book presents the latest findings on statistical inference in multivariate, multilinear and mixed linear models, providing a holistic presentation of the subject. It contains pioneering and carefully selected review contributions by experts in the field and guides the reader through topics related to estimation and testing of multivariate and mixed linear model parameters. Starting with the theory of multivariate distributions, covering identification and testing of covariance structures and means under various multivariate models, it goes on to discuss estimation in mixed linear models and their transformations. The results presented originate from the work of the research group Multivariate and Mixed Linear Models and their meetings held at the Mathematical Research and Conference Center in Będlewo, Poland, over the last 10 years. Featuring an extensive bibliography of related publications, the book is intended for PhD students and researchers in modern statistical science who are interested in multivariate and mixed linear models.