Matrices For Statistics

DOWNLOAD
Download Matrices For Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Matrices For Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Matrices For Statistics
DOWNLOAD
Author : M. J. R. Healy
language : en
Publisher: Oxford University Press
Release Date : 2000
Matrices For Statistics written by M. J. R. Healy and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.
Michael Healy's concise introduction to matrix theory has been re-written and revised to take into account recent developments in statistical practice. The more difficult topics have been expanded and some explanations have been simplified.
Linear Algebra And Matrix Analysis For Statistics
DOWNLOAD
Author : Sudipto Banerjee
language : en
Publisher: CRC Press
Release Date : 2014-06-06
Linear Algebra And Matrix Analysis For Statistics written by Sudipto Banerjee and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-06 with Mathematics categories.
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.
Matrix Algebra And Its Applications To Statistics And Econometrics
DOWNLOAD
Author : Calyampudi Radhakrishna Rao
language : en
Publisher: World Scientific
Release Date : 1998-07-10
Matrix Algebra And Its Applications To Statistics And Econometrics written by Calyampudi Radhakrishna Rao and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-07-10 with Mathematics categories.
Written by two top statisticians with experience in teaching matrix methods for applications in statistics, econometrics and related areas, this book provides a comprehensive treatment of the latest techniques in matrix algebra. A well-balanced approach to discussing the mathematical theory and applications to problems in other areas is an attractive feature of the book. It can be used as a textbook in courses on matrix algebra for statisticians, econometricians and mathematicians as well. Some of the new developments of linear models are given in some detail using results of matrix algebra.
Basics Of Matrix Algebra For Statistics With R
DOWNLOAD
Author : Nick Fieller
language : en
Publisher: CRC Press
Release Date : 2018-09-03
Basics Of Matrix Algebra For Statistics With R written by Nick Fieller and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.
A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.
Matrix Algebra
DOWNLOAD
Author : James E. Gentle
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-06
Matrix Algebra written by James E. Gentle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-06 with Mathematics categories.
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. The first part of this book presents the relevant aspects of the theory of matrix algebra for applications in statistics. This part begins with the fundamental concepts of vectors and vector spaces, next covers the basic algebraic properties of matrices, then describes the analytic properties of vectors and matrices in the multivariate calculus, and finally discusses operations on matrices in solutions of linear systems and in eigenanalysis. This part is essentially self-contained. The second part of the book begins with a consideration of various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. The second part also describes some of the many applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. The brief coverage in this part illustrates the matrix theory developed in the first part of the book. The first two parts of the book can be used as the text for a course in matrix algebra for statistics students, or as a supplementary text for various courses in linear models or multivariate statistics. The third part of this book covers numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R/S-Plus or Matlab. This part of the book can be used as the text for a course in statistical computing, or as a supplementary text for various courses that emphasize computations. The book includes a large number of exercises with some solutions provided in an appendix.
Matrix Algebra Useful For Statistics
DOWNLOAD
Author : Shayle R. Searle
language : en
Publisher: John Wiley & Sons
Release Date : 2017-05-01
Matrix Algebra Useful For Statistics written by Shayle R. Searle and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-01 with Mathematics categories.
A thoroughly updated guide to matrix algebra and it uses in statistical analysis and features SAS®, MATLAB®, and R throughout This Second Edition addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations. In addition, André I. Khuri, who has extensive research and teaching experience in the field, joins this new edition as co-author. The Second Edition also: Contains new coverage on vector spaces and linear transformations and discusses computational aspects of matrices Covers the analysis of balanced linear models using direct products of matrices Analyzes multiresponse linear models where several responses can be of interest Includes extensive use of SAS, MATLAB, and R throughout Contains over 400 examples and exercises to reinforce understanding along with select solutions Includes plentiful new illustrations depicting the importance of geometry as well as historical interludes Matrix Algebra Useful for Statistics, Second Edition is an ideal textbook for advanced undergraduate and first-year graduate level courses in statistics and other related disciplines. The book is also appropriate as a reference for independent readers who use statistics and wish to improve their knowledge of matrix algebra. THE LATE SHAYLE R. SEARLE, PHD, was professor emeritus of biometry at Cornell University. He was the author of Linear Models for Unbalanced Data and Linear Models and co-author of Generalized, Linear, and Mixed Models, Second Edition, Matrix Algebra for Applied Economics, and Variance Components, all published by Wiley. Dr. Searle received the Alexander von Humboldt Senior Scientist Award, and he was an honorary fellow of the Royal Society of New Zealand. ANDRÉ I. KHURI, PHD, is Professor Emeritus of Statistics at the University of Florida. He is the author of Advanced Calculus with Applications in Statistics, Second Edition and co-author of Statistical Tests for Mixed Linear Models, all published by Wiley. Dr. Khuri is a member of numerous academic associations, among them the American Statistical Association and the Institute of Mathematical Statistics.
Advanced Multivariate Statistics With Matrices
DOWNLOAD
Author : Tõnu Kollo
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-30
Advanced Multivariate Statistics With Matrices written by Tõnu Kollo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-30 with Mathematics categories.
The book presents important tools and techniques for treating problems in m- ern multivariate statistics in a systematic way. The ambition is to indicate new directions as well as to present the classical part of multivariate statistical analysis in this framework. The book has been written for graduate students and statis- cians who are not afraid of matrix formalism. The goal is to provide them with a powerful toolkit for their research and to give necessary background and deeper knowledge for further studies in di?erent areas of multivariate statistics. It can also be useful for researchers in applied mathematics and for people working on data analysis and data mining who can ?nd useful methods and ideas for solving their problems. Ithasbeendesignedasatextbookforatwosemestergraduatecourseonmultiva- ate statistics. Such a course has been held at the Swedish Agricultural University in 2001/02. On the other hand, it can be used as material for series of shorter courses. In fact, Chapters 1 and 2 have been used for a graduate course ”Matrices in Statistics” at University of Tartu for the last few years, and Chapters 2 and 3 formed the material for the graduate course ”Multivariate Asymptotic Statistics” in spring 2002. An advanced course ”Multivariate Linear Models” may be based on Chapter 4. A lot of literature is available on multivariate statistical analysis written for di?- ent purposes and for people with di?erent interests, background and knowledge.
Matrix Analysis For Statistics
DOWNLOAD
Author : James R. Schott
language : en
Publisher: John Wiley & Sons
Release Date : 2016-05-31
Matrix Analysis For Statistics written by James R. Schott and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-31 with Mathematics categories.
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
Matrix Tricks For Linear Statistical Models
DOWNLOAD
Author : Simo Puntanen
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-08-24
Matrix Tricks For Linear Statistical Models written by Simo Puntanen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-24 with Mathematics categories.
In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple “tricks” which simplify and clarify the treatment of a problem—both for the student and for the professor. Of course, the concept of a trick is not uniquely defined—by a trick we simply mean here a useful important handy result. In this book we collect together our Top Twenty favourite matrix tricks for linear statistical models.
Matrices With Applications In Statistics
DOWNLOAD
Author : Franklin A. Graybill
language : en
Publisher: Wadsworth Company
Release Date : 1983
Matrices With Applications In Statistics written by Franklin A. Graybill and has been published by Wadsworth Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983 with Mathematics categories.
Part of the Duxbury Classic series, Franklin A. Graybills MATRICES WITH APPLICATIONS TO STATISTICS focuses primarily on matrices as they relate to areas of multivariate analysis and the linear model. This seminal work is a time tested, authoritative resource for both students and researchers.