[PDF] Advanced Numerical Methods For Differential Equations - eBooks Review

Advanced Numerical Methods For Differential Equations


Advanced Numerical Methods For Differential Equations
DOWNLOAD

Download Advanced Numerical Methods For Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Numerical Methods For Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advanced Numerical Methods For Differential Equations


Advanced Numerical Methods For Differential Equations
DOWNLOAD
Author : Harendra Singh
language : en
Publisher: CRC Press
Release Date : 2021-07-29

Advanced Numerical Methods For Differential Equations written by Harendra Singh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-29 with Technology & Engineering categories.


Mathematical models are used to convert real-life problems using mathematical concepts and language. These models are governed by differential equations whose solutions make it easy to understand real-life problems and can be applied to engineering and science disciplines. This book presents numerical methods for solving various mathematical models. This book offers real-life applications, includes research problems on numerical treatment, and shows how to develop the numerical methods for solving problems. The book also covers theory and applications in engineering and science. Engineers, mathematicians, scientists, and researchers working on real-life mathematical problems will find this book useful.



Numerical Methods For Solving Partial Differential Equations


Numerical Methods For Solving Partial Differential Equations
DOWNLOAD
Author : George F. Pinder
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-05

Numerical Methods For Solving Partial Differential Equations written by George F. Pinder and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-05 with Technology & Engineering categories.


A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.



Numerical Solutions Of Partial Differential Equations


Numerical Solutions Of Partial Differential Equations
DOWNLOAD
Author : Silvia Bertoluzza
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-10

Numerical Solutions Of Partial Differential Equations written by Silvia Bertoluzza and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-10 with Mathematics categories.


This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.



Advanced Topics In Computational Partial Differential Equations


Advanced Topics In Computational Partial Differential Equations
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-22

Advanced Topics In Computational Partial Differential Equations written by Hans Petter Langtangen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-22 with Mathematics categories.


This book is about solving partial differential equations (PDEs). Such equa tions are used to model a wide range ofphenomena in virtually all fields ofsci ence and technology. Inthe last decade, the general availability of extremely powerful computers has shifted the focus in computational mathematics from simplified model problems to much more sophisticated models resembling in tricate features of real life. This change challenges our knowledge in computer science and in numerical analysis. The main objective ofthe present book is to teach modern,advanced tech niques for numerical PDE solution. The book also introduces several models arising in fields likefinance, medicine, material technology, and geology. Inor der to read this book, you must have a basic knowledge of partial differential equations and numerical methods for solving such equations. Furthermore, some background in finite element methods is required. You do not need to know Diffpack, although this programming environment is used in examples throughout the text. Basically, this book is about models, methods, and how to implement the methods. For the implementation part it is natural for us to use Diffpack as the programming environment, because making a PDE solver in Diffpack requires little amount of programming and because Diff pack has support for the advanced numerical methods treated in this book. Most chapters have a part on models and methods, and a part on imple mentation and Diffpack programming. The exposition is designed such that readers can focus only on the first part, if desired.



Numerical Methods For Nonlinear Partial Differential Equations


Numerical Methods For Nonlinear Partial Differential Equations
DOWNLOAD
Author : Sören Bartels
language : en
Publisher: Springer
Release Date : 2015-01-19

Numerical Methods For Nonlinear Partial Differential Equations written by Sören Bartels and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-19 with Mathematics categories.


The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.



The Numerical Solution Of Ordinary And Partial Differential Equations


The Numerical Solution Of Ordinary And Partial Differential Equations
DOWNLOAD
Author : Granville Sewell
language : en
Publisher: Academic Press
Release Date : 2014-05-10

The Numerical Solution Of Ordinary And Partial Differential Equations written by Granville Sewell and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Mathematics categories.


The Numerical Solution of Ordinary and Partial Differential Equations is an introduction to the numerical solution of ordinary and partial differential equations. Finite difference methods for solving partial differential equations are mostly classical low order formulas, easy to program but not ideal for problems with poorly behaved solutions or (especially) for problems in irregular multidimensional regions. FORTRAN77 programs are used to implement many of the methods studied. Comprised of six chapters, this book begins with a review of direct methods for the solution of linear systems, with emphasis on the special features of the linear systems that arise when differential equations are solved. The next four chapters deal with the more commonly used finite difference methods for solving a variety of problems, including both ordinary differential equations and partial differential equations, and both initial value and boundary value problems. The final chapter is an overview of the basic ideas behind the finite element method and covers the Galerkin method for boundary value problems. Examples using piecewise linear trial functions, cubic hermite trial functions, and triangular elements are presented. This monograph is appropriate for senior-level undergraduate or first-year graduate students of mathematics.



A First Course In The Numerical Analysis Of Differential Equations


A First Course In The Numerical Analysis Of Differential Equations
DOWNLOAD
Author : A. Iserles
language : en
Publisher: Cambridge University Press
Release Date : 2009

A First Course In The Numerical Analysis Of Differential Equations written by A. Iserles and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.


lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.



Numerical Methods For Ordinary Differential Equations


Numerical Methods For Ordinary Differential Equations
DOWNLOAD
Author : J. C. Butcher
language : en
Publisher: John Wiley & Sons
Release Date : 2004-08-20

Numerical Methods For Ordinary Differential Equations written by J. C. Butcher and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-08-20 with Mathematics categories.


This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.



Numerical Approximation Of Partial Differential Equations


Numerical Approximation Of Partial Differential Equations
DOWNLOAD
Author : Alfio Quarteroni
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-02-11

Numerical Approximation Of Partial Differential Equations written by Alfio Quarteroni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-11 with Mathematics categories.


Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).



Partial Differential Equations With Numerical Methods


Partial Differential Equations With Numerical Methods
DOWNLOAD
Author : Stig Larsson
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-05

Partial Differential Equations With Numerical Methods written by Stig Larsson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-05 with Mathematics categories.


The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.