[PDF] Advances In Machine Learning Ii - eBooks Review

Advances In Machine Learning Ii


Advances In Machine Learning Ii
DOWNLOAD

Download Advances In Machine Learning Ii PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Machine Learning Ii book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advances In Machine Learning Ii


Advances In Machine Learning Ii
DOWNLOAD
Author : Jacek Koronacki
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-12-24

Advances In Machine Learning Ii written by Jacek Koronacki and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-24 with Computers categories.


This is the second volume of a large two-volume editorial project we wish to dedicate to the memory of the late Professor Ryszard S. Michalski who passed away in 2007. He was one of the fathers of machine learning, an exciting and relevant, both from the practical and theoretical points of view, area in modern computer science and information technology. His research career started in the mid-1960s in Poland, in the Institute of Automation, Polish Academy of Sciences in Warsaw, Poland. He left for the USA in 1970, and since then had worked there at various universities, notably, at the University of Illinois at Urbana – Champaign and finally, until his untimely death, at George Mason University. We, the editors, had been lucky to be able to meet and collaborate with Ryszard for years, indeed some of us knew him when he was still in Poland. After he started working in the USA, he was a frequent visitor to Poland, taking part at many conferences until his death. We had also witnessed with a great personal pleasure honors and awards he had received over the years, notably when some years ago he was elected Foreign Member of the Polish Academy of Sciences among some top scientists and scholars from all over the world, including Nobel prize winners. Professor Michalski’s research results influenced very strongly the development of machine learning, data mining, and related areas. Also, he inspired many established and younger scholars and scientists all over the world. We feel very happy that so many top scientists from all over the world agreed to pay the last tribute to Professor Michalski by writing papers in their areas of research. These papers will constitute the most appropriate tribute to Professor Michalski, a devoted scholar and researcher. Moreover, we believe that they will inspire many newcomers and younger researchers in the area of broadly perceived machine learning, data analysis and data mining. The papers included in the two volumes, Machine Learning I and Machine Learning II, cover diverse topics, and various aspects of the fields involved. For convenience of the potential readers, we will now briefly summarize the contents of the particular chapters.



Advances In Machine Learning Deep Learning Based Technologies


Advances In Machine Learning Deep Learning Based Technologies
DOWNLOAD
Author : George A. Tsihrintzis
language : en
Publisher: Springer Nature
Release Date : 2021-08-05

Advances In Machine Learning Deep Learning Based Technologies written by George A. Tsihrintzis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-05 with Technology & Engineering categories.


As the 4th Industrial Revolution is restructuring human societal organization into, so-called, “Society 5.0”, the field of Machine Learning (and its sub-field of Deep Learning) and related technologies is growing continuously and rapidly, developing in both itself and towards applications in many other disciplines. Researchers worldwide aim at incorporating cognitive abilities into machines, such as learning and problem solving. When machines and software systems have been enhanced with Machine Learning/Deep Learning components, they become better and more efficient at performing specific tasks. Consequently, Machine Learning/Deep Learning stands out as a research discipline due to its worldwide pace of growth in both theoretical advances and areas of application, while achieving very high rates of success and promising major impact in science, technology and society. The book at hand aims at exposing its readers to some of the most significant Advances in Machine Learning/Deep Learning-based Technologies. The book consists of an editorial note and an additional ten (10) chapters, all invited from authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into five parts, namely (i) Machine Learning/Deep Learning in Socializing and Entertainment, (ii) Machine Learning/Deep Learning in Education, (iii) Machine Learning/Deep Learning in Security, (iv) Machine Learning/Deep Learning in Time Series Forecasting, and (v) Machine Learning in Video Coding and Information Extraction. This research book is directed towards professors, researchers, scientists, engineers and students in Machine Learning/Deep Learning-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent Machine Learning/Deep Learning-based technologies. An extensive list of bibliographic references at the end of each chapter guides the readers to probe further into the application areas of interest to them.



Advances In Machine Learning And Data Analysis


Advances In Machine Learning And Data Analysis
DOWNLOAD
Author : Burghard B Rieger
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-10-27

Advances In Machine Learning And Data Analysis written by Burghard B Rieger and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-27 with Computers categories.


A large international conference on Advances in Machine Learning and Data Analysis was held in UC Berkeley, California, USA, October 22-24, 2008, under the auspices of the World Congress on Engineering and Computer Science (WCECS 2008). This volume contains sixteen revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Expert system, Intelligent decision making, Knowledge-based systems, Knowledge extraction, Data analysis tools, Computational biology, Optimization algorithms, Experiment designs, Complex system identification, Computational modeling, and industrial applications. Advances in Machine Learning and Data Analysis offers the state of the art of tremendous advances in machine learning and data analysis and also serves as an excellent reference text for researchers and graduate students, working on machine learning and data analysis.



New Advances In Machine Learning


New Advances In Machine Learning
DOWNLOAD
Author : Yagang Zhang
language : en
Publisher: BoD – Books on Demand
Release Date : 2010-02-01

New Advances In Machine Learning written by Yagang Zhang and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-02-01 with Games & Activities categories.


The purpose of this book is to provide an up-to-date and systematical introduction to the principles and algorithms of machine learning. The definition of learning is broad enough to include most tasks that we commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass computers that improve from experience in quite straightforward ways. The book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides a good introduction to many approaches of machine learning, and it is also the source of useful bibliographical information.



Advances In Deep Learning


Advances In Deep Learning
DOWNLOAD
Author : M. Arif Wani
language : en
Publisher: Springer
Release Date : 2019-03-14

Advances In Deep Learning written by M. Arif Wani and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-14 with Computers categories.


This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models.



Machine Learning Paradigms


Machine Learning Paradigms
DOWNLOAD
Author : Maria Virvou
language : en
Publisher: Springer
Release Date : 2019-06-04

Machine Learning Paradigms written by Maria Virvou and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-04 with categories.




Advances In Financial Machine Learning


Advances In Financial Machine Learning
DOWNLOAD
Author : Marcos Lopez de Prado
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-21

Advances In Financial Machine Learning written by Marcos Lopez de Prado and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-21 with Business & Economics categories.


Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.



Deep Learning


Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10

Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.



Machine Learning


Machine Learning
DOWNLOAD
Author : Roger Inge
language : en
Publisher: Nova Publishers
Release Date : 2017

Machine Learning written by Roger Inge and has been published by Nova Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Machine learning categories.


In chapter one, Lei Jia, PhD and Hua Gao, PhD analyze machine learning applications in small molecule and macromolecule drug discovery and development while comparing the similarities and differences between the two. They also examine their advantages and limitations with the intent to encourage further creative machine learning applications in drug discovery and development. During chapter two, Oscar Claveria, Enric Monte, and Salvador Torra present a study on the extrapolative performance of several machine learning models in a multiple-input multiple-output setting that permits cross-correlation between the inputs. Bojan Ploj, Germano Resconi, and Ali Yaghoubi parallel the solution of a system by logic gates and by a neural network, in which considerations are computed by the designated one step method during chapter three. In chapter four, Loris Nannia, Nicolò Zaffonatoa, Christian Salvatoreb, Isabella Castiglionib, and the Alzheimers Disease Neuroimaging Initiative propose a method that could aid in the early diagnosis of Alzheimers disease. Afterwards, F. Dornaika and I. Kamal Aldine present and experimentally assess two non-linear data self-representativeness coding schemes based on Hilbert space and column generation. Lastly, Christos Chrysoulas, Grigorios Kalliatakis, and Georgios Stamatiadis give an overview of Apache Hadoop, an open-source software framework used to distribute storage and process big data using the MapReduce programming model.



Advances In Deep Learning Artificial Intelligence And Robotics


Advances In Deep Learning Artificial Intelligence And Robotics
DOWNLOAD
Author : Luigi Troiano
language : en
Publisher: Springer Nature
Release Date : 2022-01-03

Advances In Deep Learning Artificial Intelligence And Robotics written by Luigi Troiano and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-03 with Technology & Engineering categories.


This book of Advances in Deep Learning, Artificial Intelligence and Robotics (proceedings of ICDLAIR 2020) is intended to be used as a reference by students and researchers who collect scientific and technical contributions with respect to models, tools, technologies and applications in the field of modern artificial intelligence and robotics. Deep Learning, AI and robotics represent key ingredients for the 4th Industrial Revolution. Their extensive application is dramatically changing products and services, with a large impact on labour, economy and society at all. The research and reports of new technologies and applications in DL, AI and robotics like biometric recognition systems, medical diagnosis, industries, telecommunications, AI petri nets model-based diagnosis, gaming, stock trading, intelligent aerospace systems, robot control and web intelligence aim to bridge the gap between these non-coherent disciplines of knowledge and fosters unified development in next-generation computational models for machine intelligence.