[PDF] Bayesian Methods - eBooks Review

Bayesian Methods


Bayesian Methods
DOWNLOAD

Download Bayesian Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Introduction To Bayesian Analysis


An Introduction To Bayesian Analysis
DOWNLOAD
Author : Jayanta K. Ghosh
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-03

An Introduction To Bayesian Analysis written by Jayanta K. Ghosh and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-03 with Mathematics categories.


Though there are many recent additions to graduate-level introductory books on Bayesian analysis, none has quite our blend of theory, methods, and ap plications. We believe a beginning graduate student taking a Bayesian course or just trying to find out what it means to be a Bayesian ought to have some familiarity with all three aspects. More specialization can come later. Each of us has taught a course like this at Indian Statistical Institute or Purdue. In fact, at least partly, the book grew out of those courses. We would also like to refer to the review (Ghosh and Samanta (2002b)) that first made us think of writing a book. The book contains somewhat more material than can be covered in a single semester. We have done this intentionally, so that an instructor has some choice as to what to cover as well as which of the three aspects to emphasize. Such a choice is essential for the instructor. The topics include several results or methods that have not appeared in a graduate text before. In fact, the book can be used also as a second course in Bayesian analysis if the instructor supplies more details. Chapter 1 provides a quick review of classical statistical inference. Some knowledge of this is assumed when we compare different paradigms. Following this, an introduction to Bayesian inference is given in Chapter 2 emphasizing the need for the Bayesian approach to statistics.



Bayesian Data Analysis Third Edition


Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01

Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.


Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.



Bayesian Methods


Bayesian Methods
DOWNLOAD
Author : Jeff Gill
language : en
Publisher: CRC Press
Release Date : 2007-11-26

Bayesian Methods written by Jeff Gill and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-26 with Mathematics categories.


The first edition of Bayesian Methods: A Social and Behavioral Sciences Approach helped pave the way for Bayesian approaches to become more prominent in social science methodology. While the focus remains on practical modeling and basic theory as well as on intuitive explanations and derivations without skipping steps, this second edition incorporates the latest methodology and recent changes in software offerings. New to the Second Edition Two chapters on Markov chain Monte Carlo (MCMC) that cover ergodicity, convergence, mixing, simulated annealing, reversible jump MCMC, and coupling Expanded coverage of Bayesian linear and hierarchical models More technical and philosophical details on prior distributions A dedicated R package (BaM) with data and code for the examples as well as a set of functions for practical purposes such as calculating highest posterior density (HPD) intervals Requiring only a basic working knowledge of linear algebra and calculus, this text is one of the few to offer a graduate-level introduction to Bayesian statistics for social scientists. It first introduces Bayesian statistics and inference, before moving on to assess model quality and fit. Subsequent chapters examine hierarchical models within a Bayesian context and explore MCMC techniques and other numerical methods. Concentrating on practical computing issues, the author includes specific details for Bayesian model building and testing and uses the R and BUGS software for examples and exercises.



Bayesian Methods In Statistics


Bayesian Methods In Statistics
DOWNLOAD
Author : Mel Slater
language : en
Publisher: SAGE
Release Date : 2021-11-10

Bayesian Methods In Statistics written by Mel Slater and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-10 with Mathematics categories.


This book gets you up and running with doing complex Bayesian statistics, focussing on applied analysis rather than maths.



Bayesian Methods For Hackers


Bayesian Methods For Hackers
DOWNLOAD
Author : Cameron Davidson-Pilon
language : en
Publisher: Addison-Wesley Professional
Release Date : 2015-09-30

Bayesian Methods For Hackers written by Cameron Davidson-Pilon and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-30 with Computers categories.


Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.



Bayesian Methods In Finance


Bayesian Methods In Finance
DOWNLOAD
Author : Svetlozar T. Rachev
language : en
Publisher: John Wiley & Sons
Release Date : 2008-02-13

Bayesian Methods In Finance written by Svetlozar T. Rachev and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-13 with Business & Economics categories.


Bayesian Methods in Finance provides a detailed overview of the theory of Bayesian methods and explains their real-world applications to financial modeling. While the principles and concepts explained throughout the book can be used in financial modeling and decision making in general, the authors focus on portfolio management and market risk management—since these are the areas in finance where Bayesian methods have had the greatest penetration to date.



Bayesian Methods


Bayesian Methods
DOWNLOAD
Author : Thomas Leonard
language : en
Publisher: Cambridge University Press
Release Date : 2001-08-06

Bayesian Methods written by Thomas Leonard and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-08-06 with Mathematics categories.


Bayesian statistics directed towards mainstream statistics. How to infer scientific, medical, and social conclusions from numerical data.



Bayesian Methods For Statistical Analysis


Bayesian Methods For Statistical Analysis
DOWNLOAD
Author : Borek Puza
language : en
Publisher:
Release Date : 2015-10

Bayesian Methods For Statistical Analysis written by Borek Puza and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10 with Mathematics categories.


Bayesian Methods for Statistical Analysis is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical models, Markov chain Monte Carlo methods, finite population inference, biased sampling and nonignorable nonresponse. The book contains many exercises, all with worked solutions, including complete computer code. It is suitable for self-study or a semester-long course, with three hours of lectures and one tutorial per week for 13 weeks.



Bayesian Methods In The Search For Mh370


Bayesian Methods In The Search For Mh370
DOWNLOAD
Author : Sam Davey
language : en
Publisher: Springer
Release Date : 2016-07-15

Bayesian Methods In The Search For Mh370 written by Sam Davey and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-15 with Technology & Engineering categories.


This book demonstrates how nonlinear/non-Gaussian Bayesian time series estimation methods were used to produce a probability distribution of potential MH370 flight paths. It provides details of how the probabilistic models of aircraft flight dynamics, satellite communication system measurements, environmental effects and radar data were constructed and calibrated. The probability distribution was used to define the search zone in the southern Indian Ocean. The book describes particle-filter based numerical calculation of the aircraft flight-path probability distribution and validates the method using data from several of the involved aircraft’s previous flights. Finally it is shown how the Reunion Island flaperon debris find affects the search probability distribution.



Introduction To Bayesian Statistics


Introduction To Bayesian Statistics
DOWNLOAD
Author : Karl-Rudolf Koch
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-08

Introduction To Bayesian Statistics written by Karl-Rudolf Koch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-08 with Science categories.


This book presents Bayes’ theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters. It does so in a simple manner that is easy to comprehend. The book compares traditional and Bayesian methods with the rules of probability presented in a logical way allowing an intuitive understanding of random variables and their probability distributions to be formed.