Buku Pintar Pemrograman C Untuk Pelajar Dan Mahasiswa

DOWNLOAD
Download Buku Pintar Pemrograman C Untuk Pelajar Dan Mahasiswa PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Buku Pintar Pemrograman C Untuk Pelajar Dan Mahasiswa book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Buku Pintar Pemrograman C Untuk Pelajar Dan Mahasiswa
DOWNLOAD
Author : Vivian Siahaan
language : id
Publisher: BALIGE PUBLISHING
Release Date : 2020-03-15
Buku Pintar Pemrograman C Untuk Pelajar Dan Mahasiswa written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-15 with Computers categories.
Puji syukur kepada Tuhan Yang Maha Kuasa atas tuntasnya penulisan buku ini. Buku ini dikonsentrasikan pada penjelasan sederhana atas tiap teknik yang menjadi bahasan. Buku ini ini untuk setiap orang yang ingin belajar bagaimana memprogram C# menggunakan .NET Framework. Beberapa bab awal pada buku ini ditujukan bagi mereka yang belum memiliki pengalaman dalam memprogram. Jika Anda telah memiliki keterampilan pemrograman bahasa pemrograman lain, maka banyak materi pada buku ini akan familiar bagi Anda. Banyak aspek pada sintaks C# memiliki kesamaan dengan bahasa permrograman lain (khususnya dengan Java). Jadi, jika Anda masih belum familiar dengan .NET Framework tetapi telah berpengalaman dalam memprogram, Anda sebaiknya memulai dari Bab 1 dan kemudian membaca cepat beberapa bab sesudahnya sebelum memasuki bab-bab yang berkaitan dengan pemrograman berorientasi objek pada C#. Buku ini ditujukan bagi pemula karena difokuskan pada aspek-aspek mendasar dari pemrograman C#. Setelah membaca buku ini, Anda akan memahami bagaimana mendefinisikan metode, properti, indekser, kelas dan antarmuka pada C#. Penjelasan tiap program diberikan baris demi baris, sehingga detil informasi di balik setiap kode dapat dipahami dengan lengkap.
Buku Pintar Pemrograman Java Untuk Pelajar Dan Mahasiswa
DOWNLOAD
Author : Vivian Siahaan
language : id
Publisher: BALIGE PUBLISHING
Release Date : 2020-03-15
Buku Pintar Pemrograman Java Untuk Pelajar Dan Mahasiswa written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-15 with Computers categories.
Puji syukur kepada Tuhan Yang Maha Kuasa atas tuntasnya penulisan buku ini. Buku ini ditulis karena spirit untuk mendokumentasikan gagasan-gagasan pemrograman berorientasi objek di dalam keluarga besar JAVA. Di Indonesia, sangat jarang ditemui buku yang mendiskusikan pemrograman JAVA yang mengupas secara detil kelebihan dan kekurangan suatu kode sumber. Buku ini menelaah suatu kode sumber dengan memberikan perhatian khusus terhadap potongan-potongan kode yang dianggap penting. Buku ini dikhususkan bagi mahasiswa sarjana dan pembelajar mandiri yang menjadi pemrogram aktif. Penulis mengucapkan penghargaan yang tinggi kepada semua pihak yang telah memberikan masukan-masukan inovatif selama penulisan buku ini. Akhirnya kami berharap buku ini menjadi referensi berguna bagi mereka yang membaca
Bahasa Pemrograman Populer
DOWNLOAD
Author : Tutuk Indriyani
language : id
Publisher: PT. Sonpedia Publishing Indonesia
Release Date : 2024-01-25
Bahasa Pemrograman Populer written by Tutuk Indriyani and has been published by PT. Sonpedia Publishing Indonesia this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-25 with Computers categories.
Buku "Bahasa Pemrograman Populer" mengungkap esensi dari bahasa pemrograman utama dengan merinci poin-poin kunci. Buku ini memulai perjalanannya dengan pengantar yang menyajikan landasan dasar dan pentingnya pemahaman berbagai bahasa pemrograman dalam dunia teknologi saat ini. Dari sana, pembaca dihadapkan pada keunggulan Python sebagai bahasa serba guna yang mendominasi ilmu data dan pengembangan perangkat lunak. Dilanjutkan dengan eksplorasi peran penting JavaScript dalam pengembangan web, Java sebagai bahasa cross-platform, dan C# dengan ekosistem .NET untuk aplikasi Windows dan web. Poin akhir mengenai PHP menyoroti perannya dalam pengembangan web dinamis. Buku ini menggabungkan penjelasan yang jelas dan aplikasi praktis, memberikan pembaca pemahaman yang mendalam tentang bahasa-bahasa kunci yang membentuk lanskap pemrograman modern. Dengan fokus pada Python, JavaScript, Java, C#, dan PHP, buku ini menjadi panduan yang tak ternilai bagi mereka yang ingin menjelajahi dan menguasai dunia bahasa pemrograman.
Buku Pintar Visual Basic Untuk Pelajar Dan Mahasiswa
DOWNLOAD
Author : Vivian Siahaan
language : id
Publisher: BALIGE PUBLISHING
Release Date : 2020-03-15
Buku Pintar Visual Basic Untuk Pelajar Dan Mahasiswa written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-15 with Computers categories.
Telah banyak buku pemrograman Visual Basic .NET dipublikasikan dan didistribusikan. Faktanya, sangat sedikit yang mengupas dasar pengenalan Visual Basic .NET secara komprehensif dan yang merangkum topik bahasan secara detil dan efektif. Sementara itu, banyak para mahasiswa, insinyur, peneliti, maupun pengembang perangkat lunak yang tidak berkesempatan belajar Visual Basic .NET di universitas, tetapi tetap berkeinginan untuk menguasai Visual Basic .NET dengan berlatih setiap hari. Oleh karena itu, buku ini, yang berorientasi-contoh langkah-demi-langkah, memberikan kesempatan kepada setiap pembaca untuk belajar Visual Basic mulai dari nol sampai benar-benar menguasai. Buku ini mengungkap secara komprehensif: komponen-komponen utama Visual Basic .NET yang meliputi tipe data dan variabel; struktur seleksi dan repetisi, prosedur, fungsi, array, dan file dan struktur. Karena sifatnya yang dasar dan komprehensif, buku ini cocok untuk programer pemula, baik untuk mahasiswa maupun siswa SMU/SMK. Anda mungkin tidak langsung menjadi pakar Visual Basic .NET setelah membaca buku ini, tetapi Anda telah bersiap-siap menjadi salah satu orang yang mahir memprogram Visual Basic .NET, karena buku ini didesain untuk membantu Anda menjadi programmer Visual Basic .NET yang tangguh.
Dasar Pemrograman Teori Aplikasi
DOWNLOAD
Author : Oki Arifin
language : id
Publisher: PT. Sonpedia Publishing Indonesia
Release Date : 2023-06-05
Dasar Pemrograman Teori Aplikasi written by Oki Arifin and has been published by PT. Sonpedia Publishing Indonesia this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-05 with Computers categories.
Buku "Dasar Pemrograman: Teori & Aplikasi" adalah panduan komprehensif ditujukan untuk pemula yang membahas pengenalan dan konsep dasar pemrograman. Buku ini dirancang untuk memperkenalkan pembaca yang memiliki sedikit atau tanpa pengetahuan pemrograman sebelumnya, sebagai dasar yang diperlukan untuk memulai perjalanan dalam dunia pemrograman. Buku ini dimulai dengan penjelasan tentang apa itu paradigma pemrograman dan mengapa pemrograman sangat penting dalam dunia teknologi modern. Pembaca akan diperkenalkan dengan konsep-konsep fundamental, seperti Jenis-Jenis Bahasa Pemrograman, Struktur Data, Algoritma, Type data & Variabel, Operator, Input & output, Percabangan, Perulangan, Array dan GUI (Graphical User Interface) yang dapat digunakan dalam hampir semua bahasa pemrograman. Selanjutnya, pembaca diperkenalkan pada sintaksis dan semantik dasar dalam pemrograman melalui contoh-contoh kode yang mudah dipahami. Konsep-konsep seperti variabel, tipe data, operasi matematika, pengendalian aliran, dan fungsi diperjelas secara sistematis. Buku ini ditujukan untuk siapa saja yang ingin mempelajari pemrograman komputer dari dasar. Baik Anda seorang pemula yang belum memiliki pengetahuan sama sekali tentang pemrograman.
Connected Code
DOWNLOAD
Author : Yasmin B. Kafai
language : en
Publisher: MIT Press
Release Date : 2016-09-02
Connected Code written by Yasmin B. Kafai and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-02 with Education categories.
Why every child needs to learn to code: the shift from “computational thinking” to computational participation. Coding, once considered an arcane craft practiced by solitary techies, is now recognized by educators and theorists as a crucial skill, even a new literacy, for all children. Programming is often promoted in K-12 schools as a way to encourage “computational thinking”—which has now become the umbrella term for understanding what computer science has to contribute to reasoning and communicating in an ever-increasingly digital world. In Connected Code, Yasmin Kafai and Quinn Burke argue that although computational thinking represents an excellent starting point, the broader conception of “computational participation” better captures the twenty-first-century reality. Computational participation moves beyond the individual to focus on wider social networks and a DIY culture of digital “making.” Kafai and Burke describe contemporary examples of computational participation: students who code not for the sake of coding but to create games, stories, and animations to share; the emergence of youth programming communities; the practices and ethical challenges of remixing (rather than starting from scratch); and the move beyond stationary screens to programmable toys, tools, and textiles.
Learn From Scratch Machine Learning With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2021-03-03
Learn From Scratch Machine Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-03 with Computers categories.
In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: 6.1 Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt.
Learn From Scratch Signal And Image Processing With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-06-14
Learn From Scratch Signal And Image Processing With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-14 with Technology & Engineering categories.
In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.
Toefl Strategies
DOWNLOAD
Author : Eli Hinkel
language : en
Publisher: 아이피에스
Release Date : 1998
Toefl Strategies written by Eli Hinkel and has been published by 아이피에스 this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Language Arts & Disciplines categories.
book TOEFL STRATEGIES WITH PRACTICE TESTS, 2ND ED. (see previous listing for description) and three audiocassettes, which are revised and updated for this newest edition.
Metodologi Penelitian Kesehatan
DOWNLOAD
Author : I Ketut Swarjana, S.K.M., M.P.H., Dr.P.H.
language : id
Publisher: Penerbit Andi
Release Date : 2023-07-05
Metodologi Penelitian Kesehatan written by I Ketut Swarjana, S.K.M., M.P.H., Dr.P.H. and has been published by Penerbit Andi this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-05 with Science categories.
Penelitian adalah serangkaian proses yang dilakukan oleh peneliti dan umumnya dimulai dari penetapan topik maupun masalah penelitian, serta menemukan gap of knowledge; menentukan judul penelitian; rumusan masalah; tujuan penelitian; kerangka teori atau konsep; menetapkan variabel dan definisi operasional variabel; menetapkan metode penelitian termasuk desain, populasi, sampel, sampling, pengumpulan data, analisis, interpretasi, laporan penelitian, dan diseminasi. Penelitian dilakukan karena ada masalah atau ada kebutuhan untuk memecahkan masalah, menemukan penyebab masalah, dan Iain-Iain yang dilakukan dengan pendekatan ilmiah (scientific approach). Ada berbagai jenis penelitian yang kita kenal, mulai dari penelitian yang sangat sederhana atau dasar (basic research) sampai penelitian yang levelnya sangat tinggi dan kompleks (advanced research). Apabila dilihat dari desain penelitian, ada yang dikenal sebagai penelitian deskriptif dan juga analitik (cross-sectional, case-control, cohort, experimental study, dan Iain-Iain). Ada juga yang membagi penelitian menjadi penelitian observasional dan penelitian intervensional. Pembagian lainnya adalah penelitian kualitatif dan kuantitatif, serta ada juga yang menggabungkan penelitian kualitatif dan kuantitatif yang disebut sebagai a mixed method study. Selain desain penelitian, buku ini banyak membahas tentang alat dan metode pengumpulan data penelitian. Alat penelitian terdiri atas kuesioner, lembar observasi, check-list, dan Iain-Iain. Sementara itu, metode pengumpulan data terdiri atas metode kuesioner, wawancara, observasi, pengukuran, dan Iain-Iain. Selanjutnya, hal yang sangat penting dalam sebuah penelitian adalah analisis data penelitian. Analisis ini menggunakan statistik deskriptif khusus untuk penelitian deskriptif dan statistik inferensial khusus untuk penelitian analitik. Analisis inferensial menggunakan uji statistik parametrik maupun nonparametrik. Pembagian lainnya untuk analisis data penelitian, yaitu analisis univariate, bivariate, dan analisis multivariate. Selain hal di atas, etika penelitian juga sangat penting untuk diperhatikan. Semua penelitian terutama penelitian pada manusia harus mendapatkan approval dari komisi etik penelitian atau lembaga lain yang secara legalitas memiliki kewenangan untuk memberikan kelayakan etik sebelum penelitian dilaksanakan. Langkah berikutnya yang perlu dilakukan peneliti adalah membuat laporan penelitian, pembahasan, kesimpulan dan saran, serta melakukan diseminasi maupun publikasi hasil penelitian.