Data Analysis With Open Source Tools

DOWNLOAD
Download Data Analysis With Open Source Tools PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analysis With Open Source Tools book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Analysis With Open Source Tools
DOWNLOAD
Author : Philipp K. Janert
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2010-11-11
Data Analysis With Open Source Tools written by Philipp K. Janert and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-11 with Computers categories.
Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora
Open Source Geospatial Tools
DOWNLOAD
Author : Daniel McInerney
language : en
Publisher: Springer
Release Date : 2014-11-22
Open Source Geospatial Tools written by Daniel McInerney and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-22 with Science categories.
This book focuses on the use of open source software for geospatial analysis. It demonstrates the effectiveness of the command line interface for handling both vector, raster and 3D geospatial data. Appropriate open-source tools for data processing are clearly explained and discusses how they can be used to solve everyday tasks. A series of fully worked case studies are presented including vector spatial analysis, remote sensing data analysis, landcover classification and LiDAR processing. A hands-on introduction to the application programming interface (API) of GDAL/OGR in Python/C++ is provided for readers who want to extend existing tools and/or develop their own software.
Python For Data Analysis
DOWNLOAD
Author : Wes McKinney
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-09-25
Python For Data Analysis written by Wes McKinney and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-25 with Computers categories.
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Practical Data Analysis
DOWNLOAD
Author : Hector Cuesta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-09-30
Practical Data Analysis written by Hector Cuesta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-30 with Computers categories.
A practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache Spark About This Book Learn to use various data analysis tools and algorithms to classify, cluster, visualize, simulate, and forecast your data Apply Machine Learning algorithms to different kinds of data such as social networks, time series, and images A hands-on guide to understanding the nature of data and how to turn it into insight Who This Book Is For This book is for developers who want to implement data analysis and data-driven algorithms in a practical way. It is also suitable for those without a background in data analysis or data processing. Basic knowledge of Python programming, statistics, and linear algebra is assumed. What You Will Learn Acquire, format, and visualize your data Build an image-similarity search engine Generate meaningful visualizations anyone can understand Get started with analyzing social network graphs Find out how to implement sentiment text analysis Install data analysis tools such as Pandas, MongoDB, and Apache Spark Get to grips with Apache Spark Implement machine learning algorithms such as classification or forecasting In Detail Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service. This book explains the basic data algorithms without the theoretical jargon, and you'll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark. Style and approach This is a hands-on guide to data analysis and data processing. The concrete examples are explained with simple code and accessible data.
Guidelines For Preparing Patent Landscape Reports
DOWNLOAD
Author : World Intellectual Property Organization
language : en
Publisher: WIPO
Release Date : 2015-08-24
Guidelines For Preparing Patent Landscape Reports written by World Intellectual Property Organization and has been published by WIPO this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-24 with Law categories.
These Guidelines are designed both for general users of patent information, as well as for those involved in producing Patent Landscape Reports (PLRs). They provide step-by-step instructions on how to prepare a PLR, as well as background information such as objectives, patent analytics, concepts and frameworks.
An Introduction To Spatial Data Analysis
DOWNLOAD
Author : Martin Wegmann
language : en
Publisher: Pelagic Publishing Ltd
Release Date : 2020-09-14
An Introduction To Spatial Data Analysis written by Martin Wegmann and has been published by Pelagic Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-14 with Science categories.
This is a book about how ecologists can integrate remote sensing and GIS in their research. It will allow readers to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. An Introduction to Spatial Data Analysis introduces spatial data handling using the open source software Quantum GIS (QGIS). In addition, readers will be guided through their first steps in the R programming language. The authors explain the fundamentals of spatial data handling and analysis, empowering the reader to turn data acquired in the field into actual spatial data. Readers will learn to process and analyse spatial data of different types and interpret the data and results. After finishing this book, readers will be able to address questions such as “What is the distance to the border of the protected area?”, “Which points are located close to a road?”, “Which fraction of land cover types exist in my study area?” using different software and techniques. This book is for novice spatial data users and does not assume any prior knowledge of spatial data itself or practical experience working with such data sets. Readers will likely include student and professional ecologists, geographers and any environmental scientists or practitioners who need to collect, visualize and analyse spatial data. The software used is the widely applied open source scientific programs QGIS and R. All scripts and data sets used in the book will be provided online at book.ecosens.org. This book covers specific methods including: what to consider before collecting in situ data how to work with spatial data collected in situ the difference between raster and vector data how to acquire further vector and raster data how to create relevant environmental information how to combine and analyse in situ and remote sensing data how to create useful maps for field work and presentations how to use QGIS and R for spatial analysis how to develop analysis scripts
Research Anthology On Big Data Analytics Architectures And Applications
DOWNLOAD
Author : Management Association, Information Resources
language : en
Publisher: IGI Global
Release Date : 2021-09-24
Research Anthology On Big Data Analytics Architectures And Applications written by Management Association, Information Resources and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-24 with Computers categories.
Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.
Visualization Handbook
DOWNLOAD
Author : Charles D. Hansen
language : en
Publisher: Elsevier
Release Date : 2011-08-30
Visualization Handbook written by Charles D. Hansen and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-30 with Technology & Engineering categories.
The Visualization Handbook provides an overview of the field of visualization by presenting the basic concepts, providing a snapshot of current visualization software systems, and examining research topics that are advancing the field. This text is intended for a broad audience, including not only the visualization expert seeking advanced methods to solve a particular problem, but also the novice looking for general background information on visualization topics. The largest collection of state-of-the-art visualization research yet gathered in a single volume, this book includes articles by a "who's who of international scientific visualization researchers covering every aspect of the discipline, including:·Virtual environments for visualization·Basic visualization algorithms·Large-scale data visualization·Scalar data isosurface methods·Visualization software and frameworks·Scalar data volume rendering·Perceptual issues in visualization·Various application topics, including information visualization.* Edited by two of the best known people in the world on the subject; chapter authors are authoritative experts in their own fields;* Covers a wide range of topics, in 47 chapters, representing the state-of-the-art of scientific visualization.
Building Data Driven Applications With Danfo Js
DOWNLOAD
Author : Rising Odegua
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-24
Building Data Driven Applications With Danfo Js written by Rising Odegua and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-24 with Computers categories.
Get hands-on with building data-driven applications using Danfo.js in combination with other data analysis tools and techniques Key FeaturesBuild microservices to perform data transformation and ML model serving in JavaScriptExplore what Danfo.js is and how it helps with data analysis and data visualizationCombine Danfo.js and TensorFlow.js for machine learningBook Description Most data analysts use Python and pandas for data processing for the convenience and performance these libraries provide. However, JavaScript developers have always wanted to use machine learning in the browser as well. This book focuses on how Danfo.js brings data processing, analysis, and ML tools to JavaScript developers and how to make the most of this library to build data-driven applications. Starting with an overview of modern JavaScript, you'll cover data analysis and transformation with Danfo.js and Dnotebook. The book then shows you how to load different datasets, combine and analyze them by performing operations such as handling missing values and string manipulations. You'll also get to grips with data plotting, visualization, aggregation, and group operations by combining Danfo.js with Plotly. As you advance, you'll create a no-code data analysis and handling system and create-react-app, react-table, react-chart, Draggable.js, and tailwindcss, and understand how to use TensorFlow.js and Danfo.js to build a recommendation system. Finally, you'll build a Twitter analytics dashboard powered by Danfo.js, Next.js, node-nlp, and Twit.js. By the end of this app development book, you'll be able to build and embed data analytics, visualization, and ML capabilities into any JavaScript app in server-side Node.js or the browser. What you will learnPerform data experimentation and analysis with Danfo.js and DnotebookBuild machine learning applications using Danfo.js integrated with TensorFlow.jsConnect Danfo.js with popular database applications to aid data analysisCreate a no-code data analysis and handling system using internal librariesDevelop a recommendation system with Danfo.js and TensorFlow.jsBuild a Twitter analytics dashboard for sentiment analysis and other types of data insightsWho this book is for This book is for data analysts, data scientists, and JavaScript developers who want to create data-driven applications in the JavaScript/Node.js environment. Intermediate-level knowledge of JavaScript programming and data science using pandas is expected.
Intelligent Data Analysis
DOWNLOAD
Author : Deepak Gupta
language : en
Publisher: John Wiley & Sons
Release Date : 2020-04-27
Intelligent Data Analysis written by Deepak Gupta and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-27 with Technology & Engineering categories.
This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.