[PDF] Deep Learning Essentials - eBooks Review

Deep Learning Essentials


Deep Learning Essentials
DOWNLOAD

Download Deep Learning Essentials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Essentials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



R Deep Learning Essentials


R Deep Learning Essentials
DOWNLOAD
Author : Mark Hodnett
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-24

R Deep Learning Essentials written by Mark Hodnett and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-24 with Computers categories.


Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet Key Features Use R 3.5 for building deep learning models for computer vision and text Apply deep learning techniques in cloud for large-scale processing Build, train, and optimize neural network models on a range of datasets Book Description Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects. What you will learn Build shallow neural network prediction models Prevent models from overfitting the data to improve generalizability Explore techniques for finding the best hyperparameters for deep learning models Create NLP models using Keras and TensorFlow in R Use deep learning for computer vision tasks Implement deep learning tasks, such as NLP, recommendation systems, and autoencoders Who this book is for This second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book.



Fundamentals Of Deep Learning


Fundamentals Of Deep Learning
DOWNLOAD
Author : Nikhil Buduma
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-25

Fundamentals Of Deep Learning written by Nikhil Buduma and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-25 with Computers categories.


With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning



Deep Learning


Deep Learning
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2019-09-10

Deep Learning written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-10 with Computers categories.


An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.



Deep Learning Essentials


Deep Learning Essentials
DOWNLOAD
Author : Anurag Bhardwaj
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-30

Deep Learning Essentials written by Anurag Bhardwaj and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-30 with Computers categories.


Get to grips with the essentials of deep learning by leveraging the power of Python Key Features Your one-stop solution to get started with the essentials of deep learning and neural network modeling Train different kinds of neural networks to tackle various problems in Natural Language Processing, computer vision, speech recognition, and more Covers popular Python libraries such as Tensorflow, Keras, and more, along with tips on training, deploying and optimizing your deep learning models in the best possible manner Book Description Deep Learning a trending topic in the field of Artificial Intelligence today and can be considered to be an advanced form of machine learning, which is quite tricky to master. This book will help you take your first steps in training efficient deep learning models and applying them in various practical scenarios. You will model, train, and deploy different kinds of neural networks such as Convolutional Neural Network, Recurrent Neural Network, and will see some of their applications in real-world domains including computer vision, natural language processing, speech recognition, and so on. You will build practical projects such as chatbots, implement reinforcement learning to build smart games, and develop expert systems for image captioning and processing. Popular Python library such as TensorFlow is used in this book to build the models. This book also covers solutions for different problems you might come across while training models, such as noisy datasets, small datasets, and more. This book does not assume any prior knowledge of deep learning. By the end of this book, you will have a firm understanding of the basics of deep learning and neural network modeling, along with their practical applications. What you will learn Get to grips with the core concepts of deep learning and neural networks Set up deep learning library such as TensorFlow Fine-tune your deep learning models for NLP and Computer Vision applications Unify different information sources, such as images, text, and speech through deep learning Optimize and fine-tune your deep learning models for better performance Train a deep reinforcement learning model that plays a game better than humans Learn how to make your models get the best out of your GPU or CPU Who this book is for Aspiring data scientists and machine learning experts who have limited or no exposure to deep learning will find this book to be very useful. If you are looking for a resource that gets you up and running with the fundamentals of deep learning and neural networks, this book is for you. As the models in the book are trained using the popular Python-based libraries such as Tensorflow and Keras, it would be useful to have sound programming knowledge of Python.



Machine Learning Essentials


Machine Learning Essentials
DOWNLOAD
Author : Alboukadel Kassambara
language : en
Publisher: STHDA
Release Date : 2018-03-10

Machine Learning Essentials written by Alboukadel Kassambara and has been published by STHDA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-10 with Computers categories.


Discovering knowledge from big multivariate data, recorded every days, requires specialized machine learning techniques. This book presents an easy to use practical guide in R to compute the most popular machine learning methods for exploring real word data sets, as well as, for building predictive models. The main parts of the book include: A) Unsupervised learning methods, to explore and discover knowledge from a large multivariate data set using clustering and principal component methods. You will learn hierarchical clustering, k-means, principal component analysis and correspondence analysis methods. B) Regression analysis, to predict a quantitative outcome value using linear regression and non-linear regression strategies. C) Classification techniques, to predict a qualitative outcome value using logistic regression, discriminant analysis, naive bayes classifier and support vector machines. D) Advanced machine learning methods, to build robust regression and classification models using k-nearest neighbors methods, decision tree models, ensemble methods (bagging, random forest and boosting). E) Model selection methods, to select automatically the best combination of predictor variables for building an optimal predictive model. These include, best subsets selection methods, stepwise regression and penalized regression (ridge, lasso and elastic net regression models). We also present principal component-based regression methods, which are useful when the data contain multiple correlated predictor variables. F) Model validation and evaluation techniques for measuring the performance of a predictive model. G) Model diagnostics for detecting and fixing a potential problems in a predictive model. The book presents the basic principles of these tasks and provide many examples in R. This book offers solid guidance in data mining for students and researchers. Key features: - Covers machine learning algorithm and implementation - Key mathematical concepts are presented - Short, self-contained chapters with practical examples.



Deep Learning Essentials Neural Networks And Deep Learning Algorithms


Deep Learning Essentials Neural Networks And Deep Learning Algorithms
DOWNLOAD
Author : Michael Roberts
language : en
Publisher: Richards Education
Release Date :

Deep Learning Essentials Neural Networks And Deep Learning Algorithms written by Michael Roberts and has been published by Richards Education this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Dive into the realm of Deep Learning with 'Deep Learning Essentials: Neural Networks and Advanced Algorithms.' This comprehensive guide equips you with the foundational knowledge and practical insights needed to harness the power of neural networks and cutting-edge deep learning algorithms. From understanding neural network architectures to mastering advanced techniques like GANs and reinforcement learning, each chapter provides a deep dive into theory, practical applications, and future directions. Whether you're a student, researcher, or industry professional, this book serves as your essential companion in exploring the forefront of artificial intelligence and shaping the future of technology.



Keras Deep Learning Essentials


Keras Deep Learning Essentials
DOWNLOAD
Author : Richard Johnson
language : en
Publisher: HiTeX Press
Release Date : 2025-06-14

Keras Deep Learning Essentials written by Richard Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-14 with Computers categories.


"Keras Deep Learning Essentials" "Keras Deep Learning Essentials" is an authoritative guide that equips practitioners, researchers, and aspiring deep learning engineers with the essential knowledge and hands-on techniques for building, optimizing, and deploying state-of-the-art neural networks using the Keras framework. Beginning with the fundamental mathematical principles behind deep learning and a survey of modern neural architectures, the book offers clear explanations of Keras’s design philosophy, its seamless integration with TensorFlow, and the complete pipeline from initial prototyping to scalable production inference. With a strong emphasis on practical environment setup, the book ensures readers are well-prepared to harness advanced hardware acceleration and library dependencies for robust model development. Each chapter delves into a core aspect of the Keras workflow, from model construction patterns utilizing the Sequential and Functional APIs to sophisticated techniques such as subclassing, transfer learning, and custom layer engineering. Readers master the intricacies of efficient data pipelines, advanced feature engineering, and data augmentation strategies, supported by real-world guidance on handling class imbalance, online data validation, and complex input modalities. Model training and optimization at scale are addressed through modern loss and metric engineering, distributed and multi-GPU strategies, and advanced debugging and profiling to ensure performance and reliability for the most demanding applications. Beyond model development, "Keras Deep Learning Essentials" provides a comprehensive exploration of evaluation, explainability, and productionization. The book details best practices for model serialization, serving, mobile and edge deployment, and integration with MLOps pipelines, as well as crucial topics such as compliance, security, and sustainable AI. Advanced chapters discuss Keras’s role in cutting-edge research areas, including reinforcement learning, graph neural networks, and federated learning, positioning readers to innovate within both research and industry environments. This essential resource concludes with timely insights into emerging trends, reproducibility, and the evolving Keras ecosystem, making it indispensable for anyone seeking to advance in the deep learning domain.



Java Deep Learning Essentials


Java Deep Learning Essentials
DOWNLOAD
Author : Yusuke Sugomori
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-05-30

Java Deep Learning Essentials written by Yusuke Sugomori and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-30 with Computers categories.


Dive into the future of data science and learn how to build the sophisticated algorithms that are fundamental to deep learning and AI with Java About This Book Go beyond the theory and put Deep Learning into practice with Java Find out how to build a range of Deep Learning algorithms using a range of leading frameworks including DL4J, Theano and Caffe Whether you're a data scientist or Java developer, dive in and find out how to tackle Deep Learning Who This Book Is For This book is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It would also be good for machine learning users who intend to leverage deep learning in their projects, working within a big data environment. What You Will Learn Get a practical deep dive into machine learning and deep learning algorithms Implement machine learning algorithms related to deep learning Explore neural networks using some of the most popular Deep Learning frameworks Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms Discover more deep learning algorithms with Dropout and Convolutional Neural Networks Gain an insight into the deep learning library DL4J and its practical uses Get to know device strategies to use deep learning algorithms and libraries in the real world Explore deep learning further with Theano and Caffe In Detail AI and Deep Learning are transforming the way we understand software, making computers more intelligent than we could even imagine just a decade ago. Deep Learning algorithms are being used across a broad range of industries – as the fundamental driver of AI, being able to tackle Deep Learning is going to a vital and valuable skill not only within the tech world but also for the wider global economy that depends upon knowledge and insight for growth and success. It's something that's moving beyond the realm of data science – if you're a Java developer, this book gives you a great opportunity to expand your skillset. Starting with an introduction to basic machine learning algorithms, to give you a solid foundation, Deep Learning with Java takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. Once you've got to grips with the fundamental mathematical principles, you'll start exploring neural networks and identify how to tackle challenges in large networks using advanced algorithms. You will learn how to use the DL4J library and apply Deep Learning to a range of real-world use cases. Featuring further guidance and insights to help you solve challenging problems in image processing, speech recognition, language modeling, this book will make you rethink what you can do with Java, showing you how to use it for truly cutting-edge predictive insights. As a bonus, you'll also be able to get to grips with Theano and Caffe, two of the most important tools in Deep Learning today. By the end of the book, you'll be ready to tackle Deep Learning with Java. Wherever you've come from – whether you're a data scientist or Java developer – you will become a part of the Deep Learning revolution! Style and approach This is a step-by-step, practical tutorial that discusses key concepts. This book offers a hands-on approach to key algorithms to help you develop a greater understanding of deep learning. It is packed with implementations from scratch, with detailed explanation that make the concepts easy to understand and follow.



The Art Of Feature Engineering


The Art Of Feature Engineering
DOWNLOAD
Author : Pablo Duboue
language : en
Publisher: Cambridge University Press
Release Date : 2020-06-25

The Art Of Feature Engineering written by Pablo Duboue and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-25 with Computers categories.


A practical guide for data scientists who want to improve the performance of any machine learning solution with feature engineering.



Deep Learning By Example


Deep Learning By Example
DOWNLOAD
Author : Ahmed Menshawy
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-02-28

Deep Learning By Example written by Ahmed Menshawy and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-28 with Computers categories.


Grasp the fundamental concepts of deep learning using Tensorflow in a hands-on manner Key Features Get a first-hand experience of the deep learning concepts and techniques with this easy-to-follow guide Train different types of neural networks using Tensorflow for real-world problems in language processing, computer vision, transfer learning, and more Designed for those who believe in the concept of 'learn by doing', this book is a perfect blend of theory and code examples Book Description Deep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic. This book starts with a quick overview of the essential concepts of data science and machine learning which are required to get started with deep learning. It introduces you to Tensorflow, the most widely used machine learning library for training deep learning models. You will then work on your first deep learning problem by training a deep feed-forward neural network for digit classification, and move on to tackle other real-world problems in computer vision, language processing, sentiment analysis, and more. Advanced deep learning models such as generative adversarial networks and their applications are also covered in this book. By the end of this book, you will have a solid understanding of all the essential concepts in deep learning. With the help of the examples and code provided in this book, you will be equipped to train your own deep learning models with more confidence. What you will learn Understand the fundamentals of deep learning and how it is different from machine learning Get familiarized with Tensorflow, one of the most popular libraries for advanced machine learning Increase the predictive power of your model using feature engineering Understand the basics of deep learning by solving a digit classification problem of MNIST Demonstrate face generation based on the CelebA database, a promising application of generative models Apply deep learning to other domains like language modeling, sentiment analysis, and machine translation Who this book is for This book targets data scientists and machine learning developers who wish to get started with deep learning. If you know what deep learning is but are not quite sure of how to use it, this book will help you as well. An understanding of statistics and data science concepts is required. Some familiarity with Python programming will also be beneficial.