Deep Learning Foundations And Advancements

DOWNLOAD
Download Deep Learning Foundations And Advancements PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Foundations And Advancements book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Learning Foundations And Advancements
DOWNLOAD
Author : Dr. Gali Nageswara Rao
language : en
Publisher: RK Publication
Release Date : 2024-10-01
Deep Learning Foundations And Advancements written by Dr. Gali Nageswara Rao and has been published by RK Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-01 with Computers categories.
Deep Learning: Foundations and Advancements a comprehensive exploration of the core principles and cutting-edge developments in deep learning. This foundational topics such as neural networks, optimization techniques, and learning algorithms, while also delving into advanced applications and research, including reinforcement learning, generative models, and deep neural architectures. With a focus on both theory and practical implementation, it offers readers a solid understanding of how deep learning is transforming industries like computer vision, natural language processing, and autonomous systems.
Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10
Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Artificial Intelligence And Machine Learning Fundamentals
DOWNLOAD
Author : Zsolt Nagy
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-12
Artificial Intelligence And Machine Learning Fundamentals written by Zsolt Nagy and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with Computers categories.
Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).
Federated Learning
DOWNLOAD
Author : Qiang Yang
language : en
Publisher: Springer Nature
Release Date : 2020-11-25
Federated Learning written by Qiang Yang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Computers categories.
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Ai Algorithms Foundations Applications And Advancements
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Anand Vemula
Release Date :
Ai Algorithms Foundations Applications And Advancements written by Anand Vemula and has been published by Anand Vemula this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
This comprehensive volume offers an in-depth exploration of artificial intelligence algorithms, structured into five core parts. Beginning with foundational concepts, it introduces symbolic and statistical AI, emphasizing mathematical underpinnings such as linear algebra, probability, and optimization. Classical AI techniques like search algorithms and constraint satisfaction are explored in depth before transitioning into the domain of machine learning. In supervised and unsupervised learning chapters, readers gain insights into regression, classification, clustering, and dimensionality reduction. More advanced topics such as ensemble methods, neural networks—including CNNs, RNNs, and transformers—are detailed with practical and theoretical rigor. Reinforcement learning is examined through frameworks like MDPs, Q-learning, and policy gradients. The book further delves into evolutionary and probabilistic algorithms, detailing genetic strategies, swarm intelligence, Bayesian networks, and Monte Carlo methods. Applications in natural language processing and computer vision—covering chatbots, object detection, and GANs—are presented with modern techniques like AutoML, neural architecture search, and transfer learning. A dedicated section on applications and ethics discusses real-world AI use in healthcare, finance, and robotics, along with the challenges of bias, explainability, and governance. Finally, the book explores future directions: the quest for AGI, the promise of quantum AI, and the transformative impact of AI on labor and society. Balancing technical depth with clarity, this book serves as a valuable resource for students, practitioners, and researchers seeking a robust understanding of both the fundamentals and frontiers of AI.
Proceedings Of 3rd International Conference On Machine Learning Advances In Computing Renewable Energy And Communication
DOWNLOAD
Author : Anuradha Tomar
language : en
Publisher: Springer Nature
Release Date : 2022-09-17
Proceedings Of 3rd International Conference On Machine Learning Advances In Computing Renewable Energy And Communication written by Anuradha Tomar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-17 with Technology & Engineering categories.
This book gathers selected papers presented at International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC 2021), held in Krishna Engineering College, Ghaziabad, India, during 10 – 11 December, 2021. This book discusses key concepts, challenges and potential solutions in connection with established and emerging topics in advanced computing, renewable energy and network communications.
Graph Representation Learning
DOWNLOAD
Author : William L. Hamilton
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Graph Representation Learning written by William L. Hamilton and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Deep Learning In Data Analytics
DOWNLOAD
Author : Debi Prasanna Acharjya
language : en
Publisher: Springer Nature
Release Date : 2021-08-11
Deep Learning In Data Analytics written by Debi Prasanna Acharjya and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-11 with Technology & Engineering categories.
This book comprises theoretical foundations to deep learning, machine learning and computing system, deep learning algorithms, and various deep learning applications. The book discusses significant issues relating to deep learning in data analytics. Further in-depth reading can be done from the detailed bibliography presented at the end of each chapter. Besides, this book's material includes concepts, algorithms, figures, graphs, and tables in guiding researchers through deep learning in data science and its applications for society. Deep learning approaches prevent loss of information and hence enhance the performance of data analysis and learning techniques. It brings up many research issues in the industry and research community to capture and access data effectively. The book provides the conceptual basis of deep learning required to achieve in-depth knowledge in computer and data science. It has been done to make the book more flexible and to stimulate further interest in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications.
Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-17
Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-17 with Computers categories.
Explore the realm of artificial intelligence with "Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment." This all-encompassing guide provides an in-depth understanding of AI, machine learning, and deep learning, powered by TensorFlow—Google's leading AI framework. Whether you're a beginner starting your AI journey or a professional looking to elevate your expertise in AI model deployment, this book is tailored to meet your needs. Covering crucial topics like neural network design, convolutional and recurrent neural networks, natural language processing, and computer vision, it offers a robust introduction to TensorFlow and its AI applications. Through hands-on examples and a focus on practical solutions, you'll learn how to apply TensorFlow to solve real-world challenges. From theoretical foundations to deployment techniques, "Mastering Deep Learning with TensorFlow" takes you through every step, preparing you to build, fine-tune, and deploy advanced AI models. By the end, you’ll be ready to harness TensorFlow’s full potential, making strides in the rapidly evolving field of artificial intelligence. This book is an indispensable resource for anyone eager to engage with or advance in AI.
The Deep Learning Revolution
DOWNLOAD
Author : Terrence J. Sejnowski
language : en
Publisher: MIT Press
Release Date : 2018-10-23
The Deep Learning Revolution written by Terrence J. Sejnowski and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-23 with Computers categories.
Explore how deep learning—from Google Translate and Siri to driverless cars—is changing our lives and transforming every sector of the economy. “An important and timely book, written by a gifted scientist at the cutting edge of the AI revolution.” —Nature The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.