Differential Geometry Of Finsler And Lagrange Spaces

DOWNLOAD
Download Differential Geometry Of Finsler And Lagrange Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential Geometry Of Finsler And Lagrange Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Differential Geometry Of Finsler And Lagrange Spaces
DOWNLOAD
Author : Gauree Shanker
language : en
Publisher: LAP Lambert Academic Publishing
Release Date : 2012
Differential Geometry Of Finsler And Lagrange Spaces written by Gauree Shanker and has been published by LAP Lambert Academic Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.
Finsler geometry is a subject that concerns manifolds with Finsler metrics including Riemannian metrics. It has applications in many fields of natural sciences such as Biology, Econometrics, Physics etc. This invaluable book presents some advanced work done by the author in Finsler and Lagrange Geometry such as the theory of hyper surfaces with a beta change of Finsler metric, Cartan spaces with Generalized (, )-metric admitting h-metrical d-connection.In addition to above topics, four dimensional Finsler space with constant unified main scalars, conformal change of four dimensional Finsler space, a remarkable connection in a Finsler space with generalized (, )-metric, the existence of recurrent d-connections of the generalized Lagrange spaces and the L-duality between Finsler and Cartan spaces have been also discussed in detail. In particular the Finlerian hypersurfaces obtained by Matsumoto change of Finsler metric and the L-dual of Generalized Kropina metric have been discussed. This book will benefit the postgraduate students as well as researchers working in the field of Finsler, Lagrange Geometry and allied areas."
The Geometry Of Lagrange Spaces Theory And Applications
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
The Geometry Of Lagrange Spaces Theory And Applications written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
Differential-geometric methods are gaining increasing importance in the understanding of a wide range of fundamental natural phenomena. Very often, the starting point for such studies is a variational problem formulated for a convenient Lagrangian. From a formal point of view, a Lagrangian is a smooth real function defined on the total space of the tangent bundle to a manifold satisfying some regularity conditions. The main purpose of this book is to present: (a) an extensive discussion of the geometry of the total space of a vector bundle; (b) a detailed exposition of Lagrange geometry; and (c) a description of the most important applications. New methods are described for construction geometrical models for applications. The various chapters consider topics such as fibre and vector bundles, the Einstein equations, generalized Einstein--Yang--Mills equations, the geometry of the total space of a tangent bundle, Finsler and Lagrange spaces, relativistic geometrical optics, and the geometry of time-dependent Lagrangians. Prerequisites for using the book are a good foundation in general manifold theory and a general background in geometrical models in physics. For mathematical physicists and applied mathematicians interested in the theory and applications of differential-geometric methods.
The Geometry Of Hamilton And Lagrange Spaces
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-11
The Geometry Of Hamilton And Lagrange Spaces written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-11 with Mathematics categories.
The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagrange spaces. Following this duality Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.
Finsler And Lagrange Geometries
DOWNLOAD
Author : Mihai Anastasiei
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Finsler And Lagrange Geometries written by Mihai Anastasiei and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Science categories.
In the last decade several international conferences on Finsler, Lagrange and Hamilton geometries were organized in Bra§ov, Romania (1994), Seattle, USA (1995), Edmonton, Canada (1998), besides the Seminars that periodically are held in Japan and Romania. All these meetings produced important progress in the field and brought forth the appearance of some reference volumes. Along this line, a new International Conference on Finsler and Lagrange Geometry took place August 26-31,2001 at the "Al.I.Cuza" University in Ia§i, Romania. This Conference was organized in the framework of a Memorandum of Un derstanding (1994-2004) between the "Al.I.Cuza" University in Ia§i, Romania and the University of Alberta in Edmonton, Canada. It was especially dedicated to Prof. Dr. Peter Louis Antonelli, the liaison officer in the Memorandum, an untired promoter of Finsler, Lagrange and Hamilton geometries, very close to the Romanian School of Geometry led by Prof. Dr. Radu Miron. The dedica tion wished to mark also the 60th birthday of Prof. Dr. Peter Louis Antonelli. With this occasion a Diploma was given to Professor Dr. Peter Louis Antonelli conferring the title of Honorary Professor granted to him by the Senate of the oldest Romanian University (140 years), the "Al.I.Cuza" University, Ia§i, Roma nia. There were almost fifty participants from Egypt, Greece, Hungary, Japan, Romania, USA. There were scheduled 45 minutes lectures as well as short communications.
Handbook Of Differential Geometry
DOWNLOAD
Author : Franki J.E. Dillen
language : en
Publisher: Elsevier
Release Date : 2005-11-29
Handbook Of Differential Geometry written by Franki J.E. Dillen and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-29 with Mathematics categories.
In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics
Lagrange And Finsler Geometry
DOWNLOAD
Author : P.L. Antonelli
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Lagrange And Finsler Geometry written by P.L. Antonelli and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
The differential geometry of a regular Lagrangian is more involved than that of classical kinetic energy and consequently is far from being Riemannian. Nevertheless, such geometries are playing an increasingly important role in a wide variety of problems in fields ranging from relativistic optics to ecology. The present collection of papers will serve to bring the reader up-to-date on the most recent advances. Subjects treated include higher order Lagrange geometry, the recent theory of -Lagrange manifolds, electromagnetic theory and neurophysiology. Audience: This book is recommended as a (supplementary) text in graduate courses in differential geometry and its applications, and will also be of interest to physicists and mathematical biologists.
The Geometry Of Higher Order Lagrange Spaces
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
The Geometry Of Higher Order Lagrange Spaces written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations. It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1. A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved. Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with. Applications to higher-order analytical mechanics and theoretical physics are included as well. Audience: This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology.
An Introduction To Riemann Finsler Geometry
DOWNLOAD
Author : David Dai-Wai Bao
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-03-17
An Introduction To Riemann Finsler Geometry written by David Dai-Wai Bao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-03-17 with Mathematics categories.
This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic ..." EMS Newsletter.
New Developments In Differential Geometry Budapest 1996
DOWNLOAD
Author : J. Szenthe
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
New Developments In Differential Geometry Budapest 1996 written by J. Szenthe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27-30, 1996
Finslerian Geometries
DOWNLOAD
Author : P.L. Antonelli
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Finslerian Geometries written by P.L. Antonelli and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The International Conference on Finsler and Lagrange Geometry and its Applications: A Meeting of Minds, took place August 13-20, 1998 at the University of Alberta in Edmonton, Canada. The main objective of this meeting was to help acquaint North American geometers with the extensive modern literature on Finsler geometry and Lagrange geometry of the Japanese and European schools, each with its own venerable history, on the one hand, and to communicate recent advances in stochastic theory and Hodge theory for Finsler manifolds by the younger North American school, on the other. The intent was to bring together practitioners of these schools of thought in a Canadian venue where there would be ample opportunity to exchange information and have cordial personal interactions. The present set of refereed papers begins ·with the Pedagogical Sec tion I, where introductory and brief survey articles are presented, one from the Japanese School and two from the European School (Romania and Hungary). These have been prepared for non-experts with the intent of explaining basic points of view. The Section III is the main body of work. It is arranged in alphabetical order, by author. Section II gives a brief account of each of these contribu tions with a short reference list at the end. More extensive references are given in the individual articles.