[PDF] Expert Systems And Probabilistic Network Models - eBooks Review

Expert Systems And Probabilistic Network Models


Expert Systems And Probabilistic Network Models
DOWNLOAD

Download Expert Systems And Probabilistic Network Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Expert Systems And Probabilistic Network Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Expert Systems And Probabilistic Network Models


Expert Systems And Probabilistic Network Models
DOWNLOAD
Author : Enrique Castillo
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-12-13

Expert Systems And Probabilistic Network Models written by Enrique Castillo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-12-13 with Computers categories.


Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.



Expert Systems And Probabilistic Network Models


Expert Systems And Probabilistic Network Models
DOWNLOAD
Author : Enrique Castillo
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Expert Systems And Probabilistic Network Models written by Enrique Castillo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.



Probabilistic Networks And Expert Systems


Probabilistic Networks And Expert Systems
DOWNLOAD
Author : Robert G. Cowell
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-16

Probabilistic Networks And Expert Systems written by Robert G. Cowell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-16 with Computers categories.


Probabilistic expert systems are graphical networks which support the modeling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms. The book will be of interest to researchers in both artificial intelligence and statistics, who desire an introduction to this fascinating and rapidly developing field. The book, winner of the DeGroot Prize 2002, the only book prize in the field of statistics, is new in paperback.



Bayesian Networks And Influence Diagrams A Guide To Construction And Analysis


Bayesian Networks And Influence Diagrams A Guide To Construction And Analysis
DOWNLOAD
Author : Uffe B. Kjærulff
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-30

Bayesian Networks And Influence Diagrams A Guide To Construction And Analysis written by Uffe B. Kjærulff and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-30 with Computers categories.


Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.



Probabilistic Graphical Models


Probabilistic Graphical Models
DOWNLOAD
Author : Daphne Koller
language : en
Publisher: MIT Press
Release Date : 2009-07-31

Probabilistic Graphical Models written by Daphne Koller and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-31 with Computers categories.


A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.



Frontiers Of Expert Systems


Frontiers Of Expert Systems
DOWNLOAD
Author : Chilukuri Krishna Mohan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Frontiers Of Expert Systems written by Chilukuri Krishna Mohan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


The development of modern knowledge-based systems, for applications ranging from medicine to finance, necessitates going well beyond traditional rule-based programming. Frontiers of Expert Systems: Reasoning with Limited Knowledge attempts to satisfy such a need, introducing exciting and recent advances at the frontiers of the field of expert systems. Beginning with the central topics of logic, uncertainty and rule-based reasoning, each chapter in the book presents a different perspective on how we may solve problems that arise due to limitations in the knowledge of an expert system's reasoner. Successive chapters address (i) the fundamentals of knowledge-based systems, (ii) formal inference, and reasoning about models of a changing and partially known world, (iii) uncertainty and probabilistic methods, (iv) the expression of knowledge in rule-based systems, (v) evolving representations of knowledge as a system interacts with the environment, (vi) applying connectionist learning algorithms to improve on knowledge acquired from experts, (vii) reasoning with cases organized in indexed hierarchies, (viii) the process of acquiring and inductively learning knowledge, (ix) extraction of knowledge nuggets from very large data sets, and (x) interactions between multiple specialized reasoners with specialized knowledge bases. Each chapter takes the reader on a journey from elementary concepts to topics of active research, providing a concise description of several topics within and related to the field of expert systems, with pointers to practical applications and other relevant literature. Frontiers of Expert Systems: Reasoning with Limited Knowledge is suitable as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry.



Probabilistic Inductive Logic Programming


Probabilistic Inductive Logic Programming
DOWNLOAD
Author : Luc De Raedt
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-03-14

Probabilistic Inductive Logic Programming written by Luc De Raedt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-14 with Computers categories.


The question, how to combine probability and logic with learning, is getting an increased attention in several disciplines such as knowledge representation, reasoning about uncertainty, data mining, and machine learning simulateously. This results in the newly emerging subfield known under the names of statistical relational learning and probabilistic inductive logic programming. This book provides an introduction to the field with an emphasis on the methods based on logic programming principles. It is concerned with formalisms and systems, implementations and applications, as well as with the theory of probabilistic inductive logic programming. The 13 chapters of this state-of-the-art survey start with an introduction to probabilistic inductive logic programming; moreover the book presents a detailed overview of the most important probabilistic logic learning formalisms and systems such as relational sequence learning techniques, using kernels with logical representations, Markov logic, the PRISM system, CLP(BN), Bayesian logic programs, and the independent choice logic. The third part provides a detailed account of some show-case applications of probabilistic inductive logic programming. The final part touches upon some theoretical investigations and includes chapters on behavioural comparison of probabilistic logic programming representations and a model-theoretic expressivity analysis.



Mathematics Across Contemporary Sciences


Mathematics Across Contemporary Sciences
DOWNLOAD
Author : Taher Abualrub
language : en
Publisher: Springer
Release Date : 2017-01-22

Mathematics Across Contemporary Sciences written by Taher Abualrub and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-22 with Mathematics categories.


This work presents invited contributions from the second "International Conference on Mathematics and Statistics" jointly organized by the AUS (American University of Sharjah) and the AMS (American Mathematical Society). Addressing several research fields across the mathematical sciences, all of the papers were prepared by faculty members at universities in the Gulf region or prominent international researchers. The current volume is the first of its kind in the UAE and is intended to set new standards of excellence for collaboration and scholarship in the region.



Advances In Bayesian Networks


Advances In Bayesian Networks
DOWNLOAD
Author : José A. Gámez
language : en
Publisher: Springer
Release Date : 2013-06-29

Advances In Bayesian Networks written by José A. Gámez and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.


In recent years probabilistic graphical models, especially Bayesian networks and decision graphs, have experienced significant theoretical development within areas such as artificial intelligence and statistics. This carefully edited monograph is a compendium of the most recent advances in the area of probabilistic graphical models such as decision graphs, learning from data and inference. It presents a survey of the state of the art of specific topics of recent interest of Bayesian Networks, including approximate propagation, abductive inferences, decision graphs, and applications of influence. In addition, Advances in Bayesian Networks presents a careful selection of applications of probabilistic graphical models to various fields such as speech recognition, meteorology or information retrieval.



Risk Assessment And Decision Analysis With Bayesian Networks


Risk Assessment And Decision Analysis With Bayesian Networks
DOWNLOAD
Author : Norman Fenton
language : en
Publisher: CRC Press
Release Date : 2018-09-03

Risk Assessment And Decision Analysis With Bayesian Networks written by Norman Fenton and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.


Since the first edition of this book published, Bayesian networks have become even more important for applications in a vast array of fields. This second edition includes new material on influence diagrams, learning from data, value of information, cybersecurity, debunking bad statistics, and much more. Focusing on practical real-world problem-solving and model building, as opposed to algorithms and theory, it explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide more powerful insights and better decision making than is possible from purely data-driven solutions. Features Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, forensics, cybersecurity and more Introduces all necessary mathematics, probability, and statistics as needed Establishes the basics of probability, risk, and building and using Bayesian network models, before going into the detailed applications A dedicated website contains exercises and worked solutions for all chapters along with numerous other resources. The AgenaRisk software contains a model library with executable versions of all of the models in the book. Lecture slides are freely available to accredited academic teachers adopting the book on their course.