Function Theory And P Spaces

DOWNLOAD
Download Function Theory And P Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Function Theory And P Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Function Theory And P Spaces
DOWNLOAD
Author : Raymond Cheng
language : en
Publisher: American Mathematical Soc.
Release Date : 2020-05-28
Function Theory And P Spaces written by Raymond Cheng and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-28 with Education categories.
The classical ℓp sequence spaces have been a mainstay in Banach spaces. This book reviews some of the foundational results in this area (the basic inequalities, duality, convexity, geometry) as well as connects them to the function theory (boundary growth conditions, zero sets, extremal functions, multipliers, operator theory) of the associated spaces ℓpA of analytic functions whose Taylor coefficients belong to ℓp. Relations between the Banach space ℓp and its associated function space are uncovered using tools from Banach space geometry, including Birkhoff-James orthogonality and the resulting Pythagorean inequalities. The authors survey the literature on all of this material, including a discussion of the multipliers of ℓpA and a discussion of the Wiener algebra ℓ1A. Except for some basic measure theory, functional analysis, and complex analysis, which the reader is expected to know, the material in this book is self-contained and detailed proofs of nearly all the results are given. Each chapter concludes with some end notes that give proper references, historical background, and avenues for further exploration.
Function Spaces And Potential Theory
DOWNLOAD
Author : David R. Adams
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Function Spaces And Potential Theory written by David R. Adams and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Function spaces, especially those spaces that have become known as Sobolev spaces, and their natural extensions, are now a central concept in analysis. In particular, they play a decisive role in the modem theory of partial differential equations (PDE). Potential theory, which grew out of the theory of the electrostatic or gravita tional potential, the Laplace equation, the Dirichlet problem, etc. , had a fundamen tal role in the development of functional analysis and the theory of Hilbert space. Later, potential theory was strongly influenced by functional analysis. More re cently, ideas from potential theory have enriched the theory of those more general function spaces that appear naturally in the study of nonlinear partial differential equations. This book is motivated by the latter development. The connection between potential theory and the theory of Hilbert spaces can be traced back to C. F. Gauss [181], who proved (with modem rigor supplied almost a century later by O. Frostman [158]) the existence of equilibrium potentials by minimizing a quadratic integral, the energy. This theme is pervasive in the work of such mathematicians as D. Hilbert, Ch. -J. de La Vallee Poussin, M. Riesz, O. Frostman, A. Beurling, and the connection was made particularly clear in the work of H. Cartan [97] in the 1940's. In the thesis of J. Deny [119], and in the subsequent work of J. Deny and J. L.
Function Theory In The Unit Ball Of Cn
DOWNLOAD
Author : W. Rudin
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Function Theory In The Unit Ball Of Cn written by W. Rudin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Around 1970, an abrupt change occurred in the study of holomorphic functions of several complex variables. Sheaves vanished into the back ground, and attention was focused on integral formulas and on the "hard analysis" problems that could be attacked with them: boundary behavior, complex-tangential phenomena, solutions of the J-problem with control over growth and smoothness, quantitative theorems about zero-varieties, and so on. The present book describes some of these developments in the simple setting of the unit ball of en. There are several reasons for choosing the ball for our principal stage. The ball is the prototype of two important classes of regions that have been studied in depth, namely the strictly pseudoconvex domains and the bounded symmetric ones. The presence of the second structure (i.e., the existence of a transitive group of automorphisms) makes it possible to develop the basic machinery with a minimum of fuss and bother. The principal ideas can be presented quite concretely and explicitly in the ball, and one can quickly arrive at specific theorems of obvious interest. Once one has seen these in this simple context, it should be much easier to learn the more complicated machinery (developed largely by Henkin and his co-workers) that extends them to arbitrary strictly pseudoconvex domains. In some parts of the book (for instance, in Chapters 14-16) it would, however, have been unnatural to confine our attention exclusively to the ball, and no significant simplifications would have resulted from such a restriction.
Fixed Point Theory In Modular Function Spaces
DOWNLOAD
Author : Mohamed A. Khamsi
language : en
Publisher: Birkhäuser
Release Date : 2015-03-24
Fixed Point Theory In Modular Function Spaces written by Mohamed A. Khamsi and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-24 with Mathematics categories.
This monograph provides a concise introduction to the main results and methods of the fixed point theory in modular function spaces. Modular function spaces are natural generalizations of both function and sequence variants of many important spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-Lozanovskii spaces, and others. In most cases, particularly in applications to integral operators, approximation and fixed point results, modular type conditions are much more natural and can be more easily verified than their metric or norm counterparts. There are also important results that can be proved only using the apparatus of modular function spaces. The material is presented in a systematic and rigorous manner that allows readers to grasp the key ideas and to gain a working knowledge of the theory. Despite the fact that the work is largely self-contained, extensive bibliographic references are included, and open problems and further development directions are suggested when applicable. The monograph is targeted mainly at the mathematical research community but it is also accessible to graduate students interested in functional analysis and its applications. It could also serve as a text for an advanced course in fixed point theory of mappings acting in modular function spaces.
Functional Spaces For The Theory Of Elliptic Partial Differential Equations
DOWNLOAD
Author : Françoise Demengel
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-24
Functional Spaces For The Theory Of Elliptic Partial Differential Equations written by Françoise Demengel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-24 with Mathematics categories.
The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions. This book offers on the one hand a complete theory of Sobolev spaces, which are of fundamental importance for elliptic linear and non-linear differential equations, and explains on the other hand how the abstract methods of convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. The book also considers other kinds of functional spaces which are useful for treating variational problems such as the minimal surface problem. The main purpose of the book is to provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on the Schwartz space. There are complete and detailed proofs of almost all the results announced and, in some cases, more than one proof is provided in order to highlight different features of the result. Each chapter concludes with a range of exercises of varying levels of difficulty, with hints to solutions provided for many of them.
Operator Theory In Function Spaces
DOWNLOAD
Author : Kehe Zhu
language : en
Publisher: American Mathematical Soc.
Release Date : 2007
Operator Theory In Function Spaces written by Kehe Zhu and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.
Topics In Banach Space Theory
DOWNLOAD
Author : Fernando Albiac
language : en
Publisher: Taylor & Francis
Release Date : 2006-01-04
Topics In Banach Space Theory written by Fernando Albiac and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-04 with Mathematics categories.
This book emphasizes the isomorphic theory of Banach spaces and techniques using the unifying viewpoint of basic sequences. Its aim is to provide the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems.
Theory And Practice In Functional Cognitive Space
DOWNLOAD
Author : María de los Ángeles Gómez González
language : en
Publisher: John Benjamins Publishing Company
Release Date : 2014-07-22
Theory And Practice In Functional Cognitive Space written by María de los Ángeles Gómez González and has been published by John Benjamins Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-22 with Language Arts & Disciplines categories.
The differences among functionalist, cognitivist and/or constructionist models are generally taken to be not absolute, but rather a matter of emphasis and degree, with an increasing permeability between paradigms arising from cross-fertilizing influences. This book further explores this burgeoning area of research through the notion of functional-cognitive space, namely, the topography of the space occupied by functional, cognitivist and/or constructionist models against the background of formalist approaches in general and of Chomsky’s Minimalism in particular. Specifically, the twelve contributions in the present volume update the reader on recent developments in functionalism (Systemic Functional Grammar, Functional Discourse Grammar and Role and Reference Grammar) and cognitivism (Word Grammar, (Cognitive) Construction Grammar and the Lexical Contructional Model). Plotting cognitive-space proves particularly adequate for situating the six models represented in this volume, not only in relation to each other, but also potentially with respect to a wide spectrum of functionalist, cognitivist and/or constructionist models.
Introduction To Hp Spaces
DOWNLOAD
Author : Paul Koosis
language : en
Publisher: Cambridge University Press
Release Date : 1998
Introduction To Hp Spaces written by Paul Koosis and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Mathematics categories.
The first edition of this well known book was noted for its clear and accessible exposition of the basic theory of Hardy spaces from the concrete point of view (in the unit circle and the half plane). The intention was to give the reader, assumed to know basic real and complex variable theory and a little functional analysis, a secure foothold in the basic theory, and to understand its applications in other areas. For this reason, emphasis is placed on methods and the ideas behind them rather than on the accumulation of as many results as possible. The second edition retains that intention, but the coverage has been extended. The author has included two appendices by V. P. Havin, on Peter Jones' interpolation formula, and Havin's own proof of the weak sequential completeness of L1/H1(0); in addition, numerous amendments, additions and corrections have been made throughout.
Partial Inner Product Spaces
DOWNLOAD
Author : J-P Antoine
language : en
Publisher: Springer
Release Date : 2009-12-08
Partial Inner Product Spaces written by J-P Antoine and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-08 with Mathematics categories.
Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines.