Fundamentals Of Reinforcement Learning

DOWNLOAD
Download Fundamentals Of Reinforcement Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Reinforcement Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Fundamentals Of Reinforcement Learning
DOWNLOAD
Author : Rafael Ris-Ala
language : en
Publisher: Springer Nature
Release Date : 2023-08-14
Fundamentals Of Reinforcement Learning written by Rafael Ris-Ala and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-14 with Computers categories.
Artificial intelligence (AI) applications bring agility and modernity to our lives, and the reinforcement learning technique is at the forefront of this technology. It can outperform human competitors in strategy games, creative compositing, and autonomous movement. Moreover, it is just starting to transform our civilization. This book provides an introduction to AI, specifies machine learning techniques, and explores various aspects of reinforcement learning, approaching the latest concepts in a didactic and illustrated manner. It is aimed at students who want to be part of technological advances and professors engaged in the development of innovative applications, helping with academic and industrial challenges. Understanding the Fundamentals of Reinforcement Learning will allow you to: Understand essential AI concepts Gain professional experience Interpret sequential decision problems and solve them with reinforcement learning Learn how the Q-Learning algorithm works Practice with commented Python code Find advantageous directions
Deep Reinforcement Learning
DOWNLOAD
Author : Hao Dong
language : en
Publisher: Springer Nature
Release Date : 2020-06-29
Deep Reinforcement Learning written by Hao Dong and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep reinforcement learning (DRL) is the combination of reinforcement learning (RL) and deep learning. It has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine, and famously contributed to the success of AlphaGo. Furthermore, it opens up numerous new applications in domains such as healthcare, robotics, smart grids and finance. Divided into three main parts, this book provides a comprehensive and self-contained introduction to DRL. The first part introduces the foundations of deep learning, reinforcement learning (RL) and widely used deep RL methods and discusses their implementation. The second part covers selected DRL research topics, which are useful for those wanting to specialize in DRL research. To help readers gain a deep understanding of DRL and quickly apply the techniques in practice, the third part presents mass applications, such as the intelligent transportation system and learning to run, with detailed explanations. The book is intended for computer science students, both undergraduate and postgraduate, who would like to learn DRL from scratch, practice its implementation, and explore the research topics. It also appeals to engineers and practitioners who do not have strong machine learning background, but want to quickly understand how DRL works and use the techniques in their applications.
Understanding The Fundamentals Of Machine Learning And Ai For Digital Business
DOWNLOAD
Author : Andy Ismail
language : en
Publisher: Asadel Publisher
Release Date : 2023-06-04
Understanding The Fundamentals Of Machine Learning And Ai For Digital Business written by Andy Ismail and has been published by Asadel Publisher this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-04 with Computers categories.
"Understanding the Fundamentals of Machine Learning and AI for Digital Business" is a comprehensive guide that provides a solid foundation in the concepts and applications of machine learning and artificial intelligence. This book covers a wide range of topics, from the history and understanding of machine learning to its purpose and application in the digital business landscape. Starting with the basics, readers will gain a clear understanding of supervised learning, unsupervised learning, and reinforcement learning. They will explore evaluation methods such as accuracy, precision, recall, F1 score, and ROC-AUC, and learn how to assess the performance of machine learning models. The book delves into regression analysis, covering important techniques like polynomial regression, ridge regression, lasso regression, and vector regression. It also explores classification methods, including Naive Bayes, K-Nearest Neighbors (KNN), decision trees, random forest, and support vector machines. Readers will gain insights into clustering techniques like K-means, hierarchical clustering, and density-based clustering. They will also explore the fascinating world of deep learning, including convolutional neural networks (CNN), recurrent neural networks (RNN), long short-term memory (LSTM), and natural language processing (NLP) techniques like tokenization, stemming, and lemmatization. The book provides practical exercises throughout, allowing readers to apply their knowledge and reinforce their understanding. It covers topics such as dealing with violations of assumptions, model selection and validation, and advanced regression techniques. Ethical considerations in machine learning and AI are also addressed, highlighting the importance of responsible and ethical practices in the digital business environment. With its comprehensive coverage and practical exercises, "Understanding the Fundamentals of Machine Learning and AI for Digital Business" is an essential resource for students, professionals, and anyone interested in harnessing the power of machine learning and AI in the digital era. It offers a solid foundation in theory and practical applications, equipping readers with the skills to navigate the evolving landscape of machine learning and AI and drive digital business success.
Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2020-10-20
Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-20 with Computers categories.
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Fundamentals Of Machine Learning For Predictive Data Analytics
DOWNLOAD
Author : Dr. Amirthasaravanan Arivunambi
language : en
Publisher: RK Publication
Release Date : 2024-11-29
Fundamentals Of Machine Learning For Predictive Data Analytics written by Dr. Amirthasaravanan Arivunambi and has been published by RK Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-29 with Computers categories.
Fundamentals of Machine Learning for Predictive Data Analytics that introduces the core principles, algorithms, and techniques of machine learning for predictive modeling. It's key concepts such as supervised and unsupervised learning, feature engineering, model evaluation, and optimization. The provides a structured approach to understanding data-driven decision-making, with a strong emphasis on practical applications and real-world case studies. Designed for students, researchers, and professionals, it bridges theoretical foundations with hands-on implementation, making it an essential resource for those looking to develop expertise in predictive analytics and data science.
Fundamentals Of Deep Learning
DOWNLOAD
Author : Nikhil Buduma
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-25
Fundamentals Of Deep Learning written by Nikhil Buduma and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-25 with Computers categories.
With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning
Machine Learning Fundamentals Course
DOWNLOAD
Author : Brian Smith
language : en
Publisher: THE PUBLISHER
Release Date :
Machine Learning Fundamentals Course written by Brian Smith and has been published by THE PUBLISHER this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
This Machine Learning Fundamentals Course provides a comprehensive introduction to the field of machine learning. It covers a wide range of topics, starting with an overview of what machine learning is and its historical development. The course then delves into the basics of machine learning, including data preprocessing, feature engineering, and model evaluation. The course explores both supervised and unsupervised learning techniques, such as linear regression, logistic regression, decision trees, and clustering algorithms. It also covers model optimization and regularization, including cross-validation, hyperparameter tuning, and regularization techniques. One of the highlights of the course is the chapter on neural networks and deep learning, which introduces participants to the fundamentals of neural networks, convolutional neural networks, and recurrent neural networks. The course also covers natural language processing, recommender systems, transfer learning, model deployment, ethical considerations in machine learning, anomaly detection, reinforcement learning, time series analysis, and advanced topics such as ensemble learning and explainable AI. This course provides a solid foundation in machine learning, equipping participants with the necessary knowledge and skills to build and deploy machine learning models in real-world scenarios. Whether you are a beginner or an experienced practitioner, this course offers valuable insights into the fundamental concepts and techniques of machine learning.
Learn Unity Ml Agents Fundamentals Of Unity Machine Learning
DOWNLOAD
Author : Micheal Lanham
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-06-30
Learn Unity Ml Agents Fundamentals Of Unity Machine Learning written by Micheal Lanham and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-30 with Computers categories.
Transform games into environments using machine learning and Deep learning with Tensorflow, Keras, and Unity Key Features Learn how to apply core machine learning concepts to your games with Unity Learn the Fundamentals of Reinforcement Learning and Q-Learning and apply them to your games Learn How to build multiple asynchronous agents and run them in a training scenario Book Description Unity Machine Learning agents allow researchers and developers to create games and simulations using the Unity Editor, which serves as an environment where intelligent agents can be trained with machine learning methods through a simple-to-use Python API. This book takes you from the basics of Reinforcement and Q Learning to building Deep Recurrent Q-Network agents that cooperate or compete in a multi-agent ecosystem. You will start with the basics of Reinforcement Learning and how to apply it to problems. Then you will learn how to build self-learning advanced neural networks with Python and Keras/TensorFlow. From there you move o n to more advanced training scenarios where you will learn further innovative ways to train your network with A3C, imitation, and curriculum learning models. By the end of the book, you will have learned how to build more complex environments by building a cooperative and competitive multi-agent ecosystem. What you will learn Develop Reinforcement and Deep Reinforcement Learning for games. Understand complex and advanced concepts of reinforcement learning and neural networks Explore various training strategies for cooperative and competitive agent development Adapt the basic script components of Academy, Agent, and Brain to be used with Q Learning. Enhance the Q Learning model with improved training strategies such as Greedy-Epsilon exploration Implement a simple NN with Keras and use it as an external brain in Unity Understand how to add LTSM blocks to an existing DQN Build multiple asynchronous agents and run them in a training scenario Who this book is for This book is intended for developers with an interest in using Machine learning algorithms to develop better games and simulations with Unity. The reader will be required to have a working knowledge of C# and a basic understanding of Python.
Fundamentals Schr Dinger S Equation To Deep Learning
DOWNLOAD
Author : N.B. Singh
language : en
Publisher: N.B. Singh
Release Date :
Fundamentals Schr Dinger S Equation To Deep Learning written by N.B. Singh and has been published by N.B. Singh this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
"Focusing on the journey from understanding Schrödinger's Equation to exploring the depths of Deep Learning, this book serves as a comprehensive guide for absolute beginners with no mathematical backgrounds. Starting with fundamental concepts in quantum mechanics, the book gradually introduces readers to the intricacies of Schrödinger's Equation and its applications in various fields. With clear explanations and accessible language, readers will delve into the principles of quantum mechanics and learn how they intersect with modern technologies such as Deep Learning. By bridging the gap between theoretical physics and practical applications, this book equips readers with the knowledge and skills to navigate the fascinating world of quantum mechanics and embark on the exciting journey of Deep Learning."
Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-17
Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-17 with Computers categories.
Explore the realm of artificial intelligence with "Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment." This all-encompassing guide provides an in-depth understanding of AI, machine learning, and deep learning, powered by TensorFlow—Google's leading AI framework. Whether you're a beginner starting your AI journey or a professional looking to elevate your expertise in AI model deployment, this book is tailored to meet your needs. Covering crucial topics like neural network design, convolutional and recurrent neural networks, natural language processing, and computer vision, it offers a robust introduction to TensorFlow and its AI applications. Through hands-on examples and a focus on practical solutions, you'll learn how to apply TensorFlow to solve real-world challenges. From theoretical foundations to deployment techniques, "Mastering Deep Learning with TensorFlow" takes you through every step, preparing you to build, fine-tune, and deploy advanced AI models. By the end, you’ll be ready to harness TensorFlow’s full potential, making strides in the rapidly evolving field of artificial intelligence. This book is an indispensable resource for anyone eager to engage with or advance in AI.