Fuzzy Neural Control

DOWNLOAD
Download Fuzzy Neural Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Neural Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Fuzzy Neural Control
DOWNLOAD
Author : Junhong Nie
language : en
Publisher: Prentice Hall PTR
Release Date : 1995
Fuzzy Neural Control written by Junhong Nie and has been published by Prentice Hall PTR this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Computers categories.
Illustrating how fuzzy logic and neural networks can be integrated into a model reference control context for real-time control of multivariable systems, this book provides an architecture which accommodates several popular learning/reasoning paradigms.
Fuzzy Neural Networks For Real Time Control Applications
DOWNLOAD
Author : Erdal Kayacan
language : en
Publisher: Butterworth-Heinemann
Release Date : 2015-10-07
Fuzzy Neural Networks For Real Time Control Applications written by Erdal Kayacan and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-07 with Mathematics categories.
AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book
A First Course In Fuzzy And Neural Control
DOWNLOAD
Author : Hung T. Nguyen
language : en
Publisher: Chapman and Hall/CRC
Release Date : 2002-11-12
A First Course In Fuzzy And Neural Control written by Hung T. Nguyen and has been published by Chapman and Hall/CRC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-11-12 with Mathematics categories.
Although the use of fuzzy control methods has grown nearly to the level of classical control, the true understanding of fuzzy control lags seriously behind. Moreover, most engineers are well versed in either traditional control or in fuzzy control-rarely both. Each has applications for which it is better suited, but without a good understanding of both, engineers cannot make a sound determination of which technique to use for a given situation. A First Course in Fuzzy and Neural Control is designed to build the foundation needed to make those decisions. It begins with an introduction to standard control theory, then makes a smooth transition to complex problems that require innovative fuzzy, neural, and fuzzy-neural techniques. For each method, the authors clearly answer the questions: What is this new control method? Why is it needed? How is it implemented? Real-world examples, exercises, and ideas for student projects reinforce the concepts presented. Developed from lecture notes for a highly successful course titled The Fundamentals of Soft Computing, the text is written in the same reader-friendly style as the authors' popular A First Course in Fuzzy Logic text. A First Course in Fuzzy and Neural Control requires only a basic background in mathematics and engineering and does not overwhelm students with unnecessary material but serves to motivate them toward more advanced studies.
A First Course In Fuzzy And Neural Control
DOWNLOAD
Author : Hung T. Nguyen
language : en
Publisher: CRC Press
Release Date : 2002-11-12
A First Course In Fuzzy And Neural Control written by Hung T. Nguyen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-11-12 with Mathematics categories.
Although the use of fuzzy control methods has grown nearly to the level of classical control, the true understanding of fuzzy control lags seriously behind. Moreover, most engineers are well versed in either traditional control or in fuzzy control-rarely both. Each has applications for which it is better suited, but without a good understanding of both, engineers cannot make a sound determination of which technique to use for a given situation. A First Course in Fuzzy and Neural Control is designed to build the foundation needed to make those decisions. It begins with an introduction to standard control theory, then makes a smooth transition to complex problems that require innovative fuzzy, neural, and fuzzy-neural techniques. For each method, the authors clearly answer the questions: What is this new control method? Why is it needed? How is it implemented? Real-world examples, exercises, and ideas for student projects reinforce the concepts presented. Developed from lecture notes for a highly successful course titled The Fundamentals of Soft Computing, the text is written in the same reader-friendly style as the authors' popular A First Course in Fuzzy Logic text. A First Course in Fuzzy and Neural Control requires only a basic background in mathematics and engineering and does not overwhelm students with unnecessary material but serves to motivate them toward more advanced studies.
Neural And Fuzzy Logic Control Of Drives And Power Systems
DOWNLOAD
Author : Marcian Cirstea
language : en
Publisher: Newnes
Release Date : 2002-10-08
Neural And Fuzzy Logic Control Of Drives And Power Systems written by Marcian Cirstea and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-10-08 with Education categories.
*Introduces cutting-edge control systems to a wide readership of engineers and students *The first book on neuro-fuzzy control systems to take a practical, applications-based approach, backed up with worked examples and case studies *Learn to use VHDL in real-world applications Introducing cutting edge control systems through real-world applications Neural networks and fuzzy logic based systems offer a modern control solution to AC machines used in variable speed drives, enabling industry to save costs and increase efficiency by replacing expensive and high-maintenance DC motor systems. The use of fast micros has revolutionised the field with sensorless vector control and direct torque control. This book reflects recent research findings and acts as a useful guide to the new generation of control systems for a wide readership of advanced undergraduate and graduate students, as well as practising engineers. The authors guide readers quickly and concisely through the complex topics of neural networks, fuzzy logic, mathematical modelling of electrical machines, power systems control and VHDL design. Unlike the academic monographs that have previously been published on each of these subjects, this book combines them and is based round case studies of systems analysis, control strategies, design, simulation and implementation. The result is a guide to applied control systems design that will appeal equally to students and professional design engineers. The book can also be used as a unique VHDL design aid, based on real-world power engineering applications.
Neural Fuzzy Control Systems With Structure And Parameter Learning
DOWNLOAD
Author : C. T. Lin
language : en
Publisher: World Scientific
Release Date : 1994
Neural Fuzzy Control Systems With Structure And Parameter Learning written by C. T. Lin and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Computers categories.
A general neural-network-based connectionist model, called Fuzzy Neural Network (FNN), is proposed in this book for the realization of a fuzzy logic control and decision system. The FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities.In order to set up this proposed FNN, the author recommends two complementary structure/parameter learning algorithms: a two-phase hybrid learning algorithm and an on-line supervised structure/parameter learning algorithm.Both of these learning algorithms require exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to get. To solve this reinforcement learning problem for real-world applications, a Reinforcement Fuzzy Neural Network (RFNN) is further proposed. Computer simulation examples are presented to illustrate the performance and applicability of the proposed FNN, RFNN and their associated learning algorithms for various applications.
Foundations Of Neural Networks Fuzzy Systems And Knowledge Engineering
DOWNLOAD
Author : Nikola K. Kasabov
language : en
Publisher: Marcel Alencar
Release Date : 1996
Foundations Of Neural Networks Fuzzy Systems And Knowledge Engineering written by Nikola K. Kasabov and has been published by Marcel Alencar this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Computers categories.
Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.
Neuro Fuzzy And Fuzzy Neural Applications In Telecommunications
DOWNLOAD
Author : Peter Stavroulakis
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Neuro Fuzzy And Fuzzy Neural Applications In Telecommunications written by Peter Stavroulakis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.
Neurofuzzy and fuzzyneural techniques as tools of studying and analyzing complex problems are relatively new even though neural networks and fuzzy logic systems have been applied as computational intelligence structural e- ments for the last 40 years. Computational intelligence as an independent sci- tific field has grown over the years because of the development of these str- tural elements. Neural networks have been revived since 1982 after the seminal work of J. J. Hopfield and fuzzy sets have found a variety of applications since the pub- cation of the work of Lotfi Zadeh back in 1965. Artificial neural networks (ANN) have a large number of highly interconnected processing elements that usually operate in parallel and are configured in regular architectures. The c- lective behavior of an ANN, like a human brain, demonstrates the ability to learn,recall,and generalize from training patterns or data. The performance of neural networks depends on the computational function of the neurons in the network,the structure and topology of the network,and the learning rule or the update rule of the connecting weights. This concept of trainable neural n- works further strengthens the idea of utilizing the learning ability of neural networks to learn the fuzzy control rules,the membership functions and other parameters of a fuzzy logic control or decision systems,as we will explain later on,and this becomes the advantage of using a neural based fuzzy logic system in our analysis. On the other hand,fuzzy systems are structured numerical estimators.