[PDF] General Theory Of Algebraic Equations - eBooks Review

General Theory Of Algebraic Equations


General Theory Of Algebraic Equations
DOWNLOAD

Download General Theory Of Algebraic Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get General Theory Of Algebraic Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



General Theory Of Algebraic Equations


General Theory Of Algebraic Equations
DOWNLOAD
Author : Etienne Bézout
language : en
Publisher: Princeton University Press
Release Date : 2009-01-10

General Theory Of Algebraic Equations written by Etienne Bézout and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-10 with Mathematics categories.


This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root. It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations. Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field.



Algebraic Equations


Algebraic Equations
DOWNLOAD
Author : Edgar Dehn
language : en
Publisher: Courier Corporation
Release Date : 2012-09-05

Algebraic Equations written by Edgar Dehn and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-05 with Mathematics categories.


Focusing on basics of algebraic theory, this text presents detailed explanations of integral functions, permutations, and groups as well as Lagrange and Galois theory. Many numerical examples with complete solutions. 1930 edition.



Galois Theory Of Algebraic Equations


Galois Theory Of Algebraic Equations
DOWNLOAD
Author : Jean-Pierre Tignol
language : en
Publisher: World Scientific
Release Date : 2001

Galois Theory Of Algebraic Equations written by Jean-Pierre Tignol and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.


Galois' Theory of Algebraic Equations gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The main emphasis is placed on equations of at least the third degree, i.e. on the developments during the period from the sixteenth to the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as ?group? and ?field?. A brief discussion on the fundamental theorems of modern Galois theory is included. Complete proofs of the quoted results are provided, but the material has been organized in such a way that the most technical details can be skipped by readers who are interested primarily in a broad survey of the theory.This book will appeal to both undergraduate and graduate students in mathematics and the history of science, and also to teachers and mathematicians who wish to obtain a historical perspective of the field. The text has been designed to be self-contained, but some familiarity with basic mathematical structures and with some elementary notions of linear algebra is desirable for a good understanding of the technical discussions in the later chapters.



Algebra


Algebra
DOWNLOAD
Author : Siegfried Bosch
language : en
Publisher: Springer
Release Date : 2018-11-02

Algebra written by Siegfried Bosch and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-02 with Mathematics categories.


The material presented here can be divided into two parts. The first, sometimes referred to as abstract algebra, is concerned with the general theory of algebraic objects such as groups, rings, and fields, hence, with topics that are also basic for a number of other domains in mathematics. The second centers around Galois theory and its applications. Historically, this theory originated from the problem of studying algebraic equations, a problem that, after various unsuccessful attempts to determine solution formulas in higher degrees, found its complete clarification through the brilliant ideas of E. Galois. The study of algebraic equations has served as a motivating terrain for a large part of abstract algebra, and according to this, algebraic equations are visible as a guiding thread throughout the book. To underline this point, an introduction to the history of algebraic equations is included. The entire book is self-contained, up to a few prerequisites from linear algebra. It covers most topics of current algebra courses and is enriched by several optional sections that complement the standard program or, in some cases, provide a first view on nearby areas that are more advanced. Every chapter begins with an introductory section on "Background and Overview," motivating the material that follows and discussing its highlights on an informal level. Furthermore, each section ends with a list of specially adapted exercises, some of them with solution proposals in the appendix. The present English edition is a translation and critical revision of the eighth German edition of the Algebra book by the author. The book appeared for the first time in 1993 and, in later years, was complemented by adding a variety of related topics. At the same time it was modified and polished to keep its contents up to date.



The General Theory Of Relativity


The General Theory Of Relativity
DOWNLOAD
Author : Anadijiban Das
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-06-26

The General Theory Of Relativity written by Anadijiban Das and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-26 with Science categories.


The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: tensor analysis the special theory of relativity the general theory of relativity and Einstein’s field equations spherically symmetric solutions and experimental confirmations static and stationary space-time domains black holes cosmological models algebraic classifications and the Newman-Penrose equations the coupled Einstein-Maxwell-Klein-Gordon equations appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars. Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Ireland, Jadavpur University, India, Carnegie-Mellon University, USA, and Simon Fraser University, Canada. His major areas of research include, among diverse topics, the mathematical aspects of general relativity theory. Andrew DeBenedictis has taught courses in Theoretical Physics at Simon Fraser University, Canada, and is also a member of The Pacific Institute for the Mathematical Sciences. His research interests include quantum gravity, classical gravity, and semi-classical gravity.



Beyond The Quartic Equation


Beyond The Quartic Equation
DOWNLOAD
Author : R. Bruce King
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-01-16

Beyond The Quartic Equation written by R. Bruce King and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-16 with Mathematics categories.


One of the landmarks in the history of mathematics is the proof of the nonex- tence of algorithms based solely on radicals and elementary arithmetic operations (addition, subtraction, multiplication, and division) for solutions of general al- braic equations of degrees higher than four. This proof by the French mathema- cian Evariste Galois in the early nineteenth century used the then novel concept of the permutation symmetry of the roots of algebraic equations and led to the invention of group theory, an area of mathematics now nearly two centuries old that has had extensive applications in the physical sciences in recent decades. The radical-based algorithms for solutions of general algebraic equations of degrees 2 (quadratic equations), 3 (cubic equations), and 4 (quartic equations) have been well-known for a number of centuries. The quadratic equation algorithm uses a single square root, the cubic equation algorithm uses a square root inside a cube root, and the quartic equation algorithm combines the cubic and quadratic equation algorithms with no new features. The details of the formulas for these equations of degree d(d = 2,3,4) relate to the properties of the corresponding symmetric groups Sd which are isomorphic to the symmetries of the equilateral triangle for d = 3 and the regular tetrahedron for d — 4.



Elementary Theory Of Equations


Elementary Theory Of Equations
DOWNLOAD
Author : Leonard Eugene Dickson
language : en
Publisher: Legare Street Press
Release Date : 2022-10-26

Elementary Theory Of Equations written by Leonard Eugene Dickson and has been published by Legare Street Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-26 with History categories.


This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.



Linear Algebra And Linear Operators In Engineering


Linear Algebra And Linear Operators In Engineering
DOWNLOAD
Author : H. Ted Davis
language : en
Publisher: Elsevier
Release Date : 2000-07-12

Linear Algebra And Linear Operators In Engineering written by H. Ted Davis and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-07-12 with Mathematics categories.


Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical sciences. Also included are several numerical applications, complete with Mathematica solutions and code, giving the student a "hands-on" introduction to numerical analysis. Linear Algebra and Linear Operators in Engineering is ideally suited as the main text of an introductory graduate course, and is a fine instrument for self-study or as a general reference for those applying mathematics. - Contains numerous Mathematica examples complete with full code and solutions - Provides complete numerical algorithms for solving linear and nonlinear problems - Spans elementary notions to the functional theory of linear integral and differential equations - Includes over 130 examples, illustrations, and exercises and over 220 problems ranging from basic concepts to challenging applications - Presents real-life applications from chemical, mechanical, and electrical engineering and the physical sciences



Numerical Solution Of Initial Value Problems In Differential Algebraic Equations


Numerical Solution Of Initial Value Problems In Differential Algebraic Equations
DOWNLOAD
Author : K. E. Brenan
language : en
Publisher: SIAM
Release Date : 1996-01-01

Numerical Solution Of Initial Value Problems In Differential Algebraic Equations written by K. E. Brenan and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-01-01 with Mathematics categories.


This book describes some of the places where differential-algebraic equations (DAE's) occur.



Foundations Of Galois Theory


Foundations Of Galois Theory
DOWNLOAD
Author : M. M. Postnikov
language : en
Publisher: Courier Corporation
Release Date : 2004-02-02

Foundations Of Galois Theory written by M. M. Postnikov and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-02-02 with Mathematics categories.


Written by a prominent mathematician, this text offers advanced undergraduate and graduate students a virtually self-contained treatment of the basics of Galois theory. The source of modern abstract algebra and one of abstract algebra's most concrete applications, Galois theory serves as an excellent introduction to group theory and provides a strong, historically relevant motivation for the introduction of the basics of abstract algebra. This two-part treatment begins with the elements of Galois theory, focusing on related concepts from field theory, including the structure of important types of extensions and the field of algebraic numbers. A consideration of relevant facts from group theory leads to a survey of Galois theory, with discussions of normal extensions, the order and correspondence of the Galois group, and Galois groups of a normal subfield and of two fields. The second part explores the solution of equations by radicals, returning to the general theory of groups for relevant facts, examining equations solvable by radicals and their construction, and concluding with the unsolvability by radicals of the general equation of degree n ≥ 5.