[PDF] Generalized Linear Models And Extensions Second Edition - eBooks Review

Generalized Linear Models And Extensions Second Edition


Generalized Linear Models And Extensions Second Edition
DOWNLOAD

Download Generalized Linear Models And Extensions Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalized Linear Models And Extensions Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Generalized Linear Models And Extensions Second Edition


Generalized Linear Models And Extensions Second Edition
DOWNLOAD
Author : James W. Hardin
language : en
Publisher: Stata Press
Release Date : 2007

Generalized Linear Models And Extensions Second Edition written by James W. Hardin and has been published by Stata Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.


Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.



Generalized Linear Models Second Edition


Generalized Linear Models Second Edition
DOWNLOAD
Author : P. McCullagh
language : en
Publisher: CRC Press
Release Date : 1989-08-01

Generalized Linear Models Second Edition written by P. McCullagh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-08-01 with Mathematics categories.


The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and other applications. The authors focus on examining the way a response variable depends on a combination of explanatory variables, treatment, and classification variables. They give particular emphasis to the important case where the dependence occurs through some unknown, linear combination of the explanatory variables. The Second Edition includes topics added to the core of the first edition, including conditional and marginal likelihood methods, estimating equations, and models for dispersion effects and components of dispersion. The discussion of other topics-log-linear and related models, log odds-ratio regression models, multinomial response models, inverse linear and related models, quasi-likelihood functions, and model checking-was expanded and incorporates significant revisions. Comprehension of the material requires simply a knowledge of matrix theory and the basic ideas of probability theory, but for the most part, the book is self-contained. Therefore, with its worked examples, plentiful exercises, and topics of direct use to researchers in many disciplines, Generalized Linear Models serves as ideal text, self-study guide, and reference.



Linear Models With R Second Edition


Linear Models With R Second Edition
DOWNLOAD
Author : Julian J. Faraway
language : en
Publisher: CRC Press
Release Date : 2014-07-01

Linear Models With R Second Edition written by Julian J. Faraway and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-01 with Mathematics categories.


A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.



Foundations Of Linear And Generalized Linear Models


Foundations Of Linear And Generalized Linear Models
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: John Wiley & Sons
Release Date : 2015-02-23

Foundations Of Linear And Generalized Linear Models written by Alan Agresti and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-23 with Mathematics categories.


A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.



Linear Models And Generalizations


Linear Models And Generalizations
DOWNLOAD
Author : C. Radhakrishna Rao
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-15

Linear Models And Generalizations written by C. Radhakrishna Rao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-15 with Mathematics categories.


Thebookisbasedonseveralyearsofexperienceofbothauthorsinteaching linear models at various levels. It gives an up-to-date account of the theory and applications of linear models. The book can be used as a text for courses in statistics at the graduate level and as an accompanying text for courses in other areas. Some of the highlights in this book are as follows. A relatively extensive chapter on matrix theory (Appendix A) provides the necessary tools for proving theorems discussed in the text and o?ers a selectionofclassicalandmodernalgebraicresultsthatareusefulinresearch work in econometrics, engineering, and optimization theory. The matrix theory of the last ten years has produced a series of fundamental results aboutthe de?niteness ofmatrices,especially forthe di?erences ofmatrices, which enable superiority comparisons of two biased estimates to be made for the ?rst time. We have attempted to provide a uni?ed theory of inference from linear models with minimal assumptions. Besides the usual least-squares theory, alternative methods of estimation and testing based on convex loss fu- tions and general estimating equations are discussed. Special emphasis is given to sensitivity analysis and model selection. A special chapter is devoted to the analysis of categorical data based on logit, loglinear, and logistic regression models. The material covered, theoretical discussion, and a variety of practical applications will be useful not only to students but also to researchers and consultants in statistics.



Generalized Linear Models For Insurance Rating


Generalized Linear Models For Insurance Rating
DOWNLOAD
Author : Mark Goldburd
language : en
Publisher:
Release Date : 2016-06-08

Generalized Linear Models For Insurance Rating written by Mark Goldburd and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-08 with categories.




Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020

Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.



Generalized Linear And Mixed Models


Generalized Linear And Mixed Models
DOWNLOAD
Author : Charles E. McCulloch
language : en
Publisher: John Wiley & Sons
Release Date : 2004-03-22

Generalized Linear And Mixed Models written by Charles E. McCulloch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-22 with Social Science categories.


Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models



Statistical Regression And Classification


Statistical Regression And Classification
DOWNLOAD
Author : Norman Matloff
language : en
Publisher: CRC Press
Release Date : 2017-09-19

Statistical Regression And Classification written by Norman Matloff and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-19 with Business & Economics categories.


Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.



Generalized Linear Models


Generalized Linear Models
DOWNLOAD
Author : Jeff Gill
language : en
Publisher: SAGE Publications
Release Date : 2000-08-07

Generalized Linear Models written by Jeff Gill and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-08-07 with Social Science categories.


The author explains the theoretical underpinnings of generalized linear models so that researchers can decide how to select the best way to adapt their data for this type of analysis. Examples are provided to illustrate the application of GLM to actual data and the author includes his Web address where additional resources can be found.