Geometrical Methods Of Nonlinear Analysis

DOWNLOAD
Download Geometrical Methods Of Nonlinear Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometrical Methods Of Nonlinear Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Geometrical Methods Of Nonlinear Analysis
DOWNLOAD
Author : Mark Aleksandrovich Krasnoselʹskiĭ
language : en
Publisher: Springer
Release Date : 1984
Geometrical Methods Of Nonlinear Analysis written by Mark Aleksandrovich Krasnoselʹskiĭ and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with Mathematics categories.
Geometrical Methods Of Nonlinear Analysis
DOWNLOAD
Author : Mark Aleksandrovich Krasnoselskii
language : de
Publisher:
Release Date : 1984
Geometrical Methods Of Nonlinear Analysis written by Mark Aleksandrovich Krasnoselskii and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with categories.
Nonlinear Systems Analysis
DOWNLOAD
Author : M. Vidyasagar
language : en
Publisher: SIAM
Release Date : 2002-01-01
Nonlinear Systems Analysis written by M. Vidyasagar and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-01 with Mathematics categories.
When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.
Convex Analysis And Nonlinear Geometric Elliptic Equations
DOWNLOAD
Author : Ilya J. Bakelman
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Convex Analysis And Nonlinear Geometric Elliptic Equations written by Ilya J. Bakelman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.
Geometrical Methods Of Nonlinear Analysis
DOWNLOAD
Author : Mark Aleksandrovich Krasnoselʹskiĭ
language : en
Publisher: Springer
Release Date : 1984
Geometrical Methods Of Nonlinear Analysis written by Mark Aleksandrovich Krasnoselʹskiĭ and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with Mathematics categories.
Geometrical (in particular, topological) methods in nonlinear analysis were originally invented by Banach, Birkhoff, Kellogg, Schauder, Leray, and others in existence proofs. Since about the fifties, these methods turned out to be essentially the sole approach to a variety of new problems: the investigation of iteration processes and other procedures in numerical analysis, in bifur cation problems and branching of solutions, estimates on the number of solutions and criteria for the existence of nonzero solutions, the analysis of the structure of the solution set, etc. These methods have been widely applied to the theory of forced vibrations and auto-oscillations, to various problems in the theory of elasticity and fluid. mechanics, to control theory, theoretical physics, and various parts of mathematics. At present, nonlinear analysis along with its geometrical, topological, analytical, variational, and other methods is developing tremendously thanks to research work in many countries. Totally new ideas have been advanced, difficult problems have been solved, and new applications have been indicated. To enumerate the publications of the last few years one would need dozens of pages. On the other hand, many problems of non linear analysis are still far from a solution (problems arising from the internal development of mathematics and, in particular, problems arising in the process of interpreting new problems in the natural sciences). We hope that the English edition of our book will contribute to the further propagation of the ideas of nonlinear analysis.
Some Nonlinear Problems In Riemannian Geometry
DOWNLOAD
Author : Thierry Aubin
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Some Nonlinear Problems In Riemannian Geometry written by Thierry Aubin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
During the last few years, the field of nonlinear problems has undergone great development. This book consisting of the updated Grundlehren volume 252 by the author and of a newly written part, deals with some important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved. Each problem is explained, up-to-date results are given and proofs are presented. Thus, the reader is given access, for each specific problem, to its present status of solution as well as to the most up-to-date methods for approaching it. The main objective of the book is to explain some methods and new techniques, and to apply them. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber.
Geometrical Methods In The Theory Of Ordinary Differential Equations
DOWNLOAD
Author : V.I. Arnold
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Geometrical Methods In The Theory Of Ordinary Differential Equations written by V.I. Arnold and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, aswell as all users of the theory of differential equations.
Lyapunov Schmidt Methods In Nonlinear Analysis And Applications
DOWNLOAD
Author : Nikolay Sidorov
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Lyapunov Schmidt Methods In Nonlinear Analysis And Applications written by Nikolay Sidorov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
This book concentrates on the branching solutions of nonlinear operator equations and the theory of degenerate operator-differential equations especially applicable to algorithmic analysis and nonlinear PDE's in mechanics and mathematical physics. The authors expound the recent result on the generalized eigen-value problem, the perturbation method, Schmidt's pseudo-inversion for regularization of linear and nonlinear problems in the branching theory and group methods in bifurcation theory. The book covers regular iterative methods in a neighborhood of branch points and the theory of differential-operator equations with a non-invertible operator in the main expression is constructed. Various recent results on theorems of existence are given including asymptotic, approximate and group methods.
Geometrical Methods Of Mathematical Physics
DOWNLOAD
Author : Bernard F. Schutz
language : en
Publisher: Cambridge University Press
Release Date : 1980-01-28
Geometrical Methods Of Mathematical Physics written by Bernard F. Schutz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1980-01-28 with Science categories.
In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.
Handbook Of Metric Fixed Point Theory
DOWNLOAD
Author : William Kirk
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-06-30
Handbook Of Metric Fixed Point Theory written by William Kirk and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-30 with Mathematics categories.
Preface. 1. Contraction Mappings and Extensions; W.A. Kirk. 2. Examples of Fixed Point Free Mappings; B. Sims. 3. Classical Theory of Nonexpansive Mappings; K. Goebel, W.A. Kirk. 4. Geometrical Background of Metric Fixed Point Theory; S. Prus. 5. Some Moduli and Constants Related to Metric Fixed Point Theory; E.L. Fuster. 6. Ultra-Methods in Metric Fixed Point Theory; M.A. Khamsi, B. Sims. 7. Stability of the Fixed Point Property for Nonexpansive Mappings; J. Garcia-Falset, A. Jiménez-Melado, E. Llorens-Fuster. 8. Metric Fixed Point Results Concerning Measures of Noncompactness; T. Dominguez, M.A. JapÃ3n, G. LÃ3pez. 9. Renormings of l1 and c0 and Fixed Point Properties; P.N. Dowling, C.J. Lennard, B. Turett. 10. Nonexpansive Mappings: Boundary/Inwardness Conditions and Local Theory; W.A. Kirk, C.H. Morales. 11. Rotative Mappings and Mappings with Constant Displacement; W. Kaczor, M. Koter-MÃ3rgowska. 12. Geometric Properties Related to Fixed Point Theory in Some Banach Function Lattices; S. Chen, Y. Cui, H. Hudzik, B. Sims. 13. Introduction to Hyperconvex Spaces; R. Espinola, M.A. Khamsi. 14. Fixed Points of Holomorphic Mappings: A Metric Approach; T. Kuczumow, S. Reich, D. Shoikhet. 15. Fixed Point and Non-Linear Ergodic Theorems for Semigroups of Non-Linear Mappings; A. To-Ming Lau, W. Takahashi. 16. Generic Aspects of Metric Fixed Point Theory; S. Reich, A.J. Zaslavski. 17. Metric Environment of the Topological Fixed Point Theorms; K. Goebel. 18. Order-Theoretic Aspects of Metric Fixed Point Theory; J. Jachymski. 19. Fixed Point and Related Theorems for Set-Valued Mappings; G.X.-Z. Yuan. Index.