[PDF] Homogeneous Finsler Spaces - eBooks Review

Homogeneous Finsler Spaces


Homogeneous Finsler Spaces
DOWNLOAD

Download Homogeneous Finsler Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Homogeneous Finsler Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Homogeneous Finsler Spaces


Homogeneous Finsler Spaces
DOWNLOAD
Author :
language : en
Publisher: Springer
Release Date : 2012-08-31

Homogeneous Finsler Spaces written by and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-31 with categories.




Homogeneous Finsler Spaces


Homogeneous Finsler Spaces
DOWNLOAD
Author : Shaoqiang Deng
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-08-01

Homogeneous Finsler Spaces written by Shaoqiang Deng and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-01 with Mathematics categories.


Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces, leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. Readers with some background in Lie theory or differential geometry can quickly begin studying problems concerning Lie groups and Finsler geometry.​



Lie Groups Differential Equations And Geometry


Lie Groups Differential Equations And Geometry
DOWNLOAD
Author : Giovanni Falcone
language : en
Publisher: Springer
Release Date : 2017-09-19

Lie Groups Differential Equations And Geometry written by Giovanni Falcone and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-19 with Mathematics categories.


This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.



Riemannian Manifolds And Homogeneous Geodesics


Riemannian Manifolds And Homogeneous Geodesics
DOWNLOAD
Author : Valerii Berestovskii
language : en
Publisher: Springer Nature
Release Date : 2020-11-05

Riemannian Manifolds And Homogeneous Geodesics written by Valerii Berestovskii and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-05 with Mathematics categories.


This book is devoted to Killing vector fields and the one-parameter isometry groups of Riemannian manifolds generated by them. It also provides a detailed introduction to homogeneous geodesics, that is, geodesics that are integral curves of Killing vector fields, presenting both classical and modern results, some very recent, many of which are due to the authors. The main focus is on the class of Riemannian manifolds with homogeneous geodesics and on some of its important subclasses. To keep the exposition self-contained the book also includes useful general results not only on geodesic orbit manifolds, but also on smooth and Riemannian manifolds, Lie groups and Lie algebras, homogeneous Riemannian manifolds, and compact homogeneous Riemannian spaces. The intended audience is graduate students and researchers whose work involves differential geometry and transformation groups.



The Geometry Of Higher Order Hamilton Spaces


The Geometry Of Higher Order Hamilton Spaces
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

The Geometry Of Higher Order Hamilton Spaces written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book is the first to present an overview of higher-order Hamilton geometry with applications to higher-order Hamiltonian mechanics. It is a direct continuation of the book The Geometry of Hamilton and Lagrange Spaces, (Kluwer Academic Publishers, 2001). It contains the general theory of higher order Hamilton spaces H(k)n, k>=1, semisprays, the canonical nonlinear connection, the N-linear metrical connection and their structure equations, and the Riemannian almost contact metrical model of these spaces. In addition, the volume also describes new developments such as variational principles for higher order Hamiltonians; Hamilton-Jacobi equations; higher order energies and law of conservation; Noether symmetries; Hamilton subspaces of order k and their fundamental equations. The duality, via Legendre transformation, between Hamilton spaces of order k and Lagrange spaces of the same order is pointed out. Also, the geometry of Cartan spaces of order k =1 is investigated in detail. This theory is useful in the construction of geometrical models in theoretical physics, mechanics, dynamical systems, optimal control, biology, economy etc.



An Introduction To Riemann Finsler Geometry


An Introduction To Riemann Finsler Geometry
DOWNLOAD
Author : D. Bao
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

An Introduction To Riemann Finsler Geometry written by D. Bao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe? It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one.



The Geometry Of Hamilton And Lagrange Spaces


The Geometry Of Hamilton And Lagrange Spaces
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-11

The Geometry Of Hamilton And Lagrange Spaces written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-11 with Mathematics categories.


The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagrange spaces. Following this duality Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.



Differential Geometry Of Spray And Finsler Spaces


Differential Geometry Of Spray And Finsler Spaces
DOWNLOAD
Author : Zhongmin Shen
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Differential Geometry Of Spray And Finsler Spaces written by Zhongmin Shen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemannian spaces in his ground-breaking Habilitationsvortrag. Thereafter the geometry of these special regular metric spaces is named after him. Riemann also mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces. Finsler, however, did not go any further to introduce curvatures for regular metric spaces. He switched his research direction to set theory shortly after his graduation.



Finsler Spaces Derived From Riemannian Spaces By Homogeneous Contact Transformations


Finsler Spaces Derived From Riemannian Spaces By Homogeneous Contact Transformations
DOWNLOAD
Author : M.A. Mcavity
language : en
Publisher:
Release Date : 1971

Finsler Spaces Derived From Riemannian Spaces By Homogeneous Contact Transformations written by M.A. Mcavity and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1971 with categories.




Transformation Groups In Differential Geometry


Transformation Groups In Differential Geometry
DOWNLOAD
Author : Shoshichi Kobayashi
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Transformation Groups In Differential Geometry written by Shoshichi Kobayashi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.