[PDF] Information Driven Machine Learning - eBooks Review

Information Driven Machine Learning


Information Driven Machine Learning
DOWNLOAD

Download Information Driven Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Information Driven Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Driven Science And Engineering


Data Driven Science And Engineering
DOWNLOAD
Author : Steven L. Brunton
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-05

Data Driven Science And Engineering written by Steven L. Brunton and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-05 with Computers categories.


A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.



Information Driven Machine Learning


Information Driven Machine Learning
DOWNLOAD
Author : Gerald Friedland
language : en
Publisher: Springer Nature
Release Date : 2023-12-01

Information Driven Machine Learning written by Gerald Friedland and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-01 with Computers categories.


This groundbreaking book transcends traditional machine learning approaches by introducing information measurement methodologies that revolutionize the field. Stemming from a UC Berkeley seminar on experimental design for machine learning tasks, these techniques aim to overcome the 'black box' approach of machine learning by reducing conjectures such as magic numbers (hyper-parameters) or model-type bias. Information-based machine learning enables data quality measurements, a priori task complexity estimations, and reproducible design of data science experiments. The benefits include significant size reduction, increased explainability, and enhanced resilience of models, all contributing to advancing the discipline's robustness and credibility. While bridging the gap between machine learning and disciplines such as physics, information theory, and computer engineering, this textbook maintains an accessible and comprehensive style, making complex topics digestible fora broad readership. Information-Driven Machine Learning explores the synergistic harmony among these disciplines to enhance our understanding of data science modeling. Instead of solely focusing on the "how," this text provides answers to the "why" questions that permeate the field, shedding light on the underlying principles of machine learning processes and their practical implications. By advocating for systematic methodologies grounded in fundamental principles, this book challenges industry practices that have often evolved from ideologic or profit-driven motivations. It addresses a range of topics, including deep learning, data drift, and MLOps, using fundamental principles such as entropy, capacity, and high dimensionality. Ideal for both academia and industry professionals, this textbook serves as a valuable tool for those seeking to deepen their understanding of data science as an engineering discipline. Its thought-provoking content stimulates intellectual curiosity and caters to readers who desire more than just code or ready-made formulas. The text invites readers to explore beyond conventional viewpoints, offering an alternative perspective that promotes a big-picture view for integrating theory with practice. Suitable for upper undergraduate or graduate-level courses, this book can also benefit practicing engineers and scientists in various disciplines by enhancing their understanding of modeling and improving data measurement effectively.



Information Driven Machine Learning


Information Driven Machine Learning
DOWNLOAD
Author : Gerald Friedland
language : en
Publisher: Springer
Release Date : 2024-12-02

Information Driven Machine Learning written by Gerald Friedland and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-02 with Computers categories.




Encyclopedia Of Data Science And Machine Learning


Encyclopedia Of Data Science And Machine Learning
DOWNLOAD
Author : Wang, John
language : en
Publisher: IGI Global
Release Date : 2023-01-20

Encyclopedia Of Data Science And Machine Learning written by Wang, John and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-20 with Computers categories.


Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.



Artificial Intelligence Driven By Machine Learning And Deep Learning


Artificial Intelligence Driven By Machine Learning And Deep Learning
DOWNLOAD
Author : Bahman Zohuri
language : en
Publisher: Nova Science Publishers
Release Date : 2020

Artificial Intelligence Driven By Machine Learning And Deep Learning written by Bahman Zohuri and has been published by Nova Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


"The future of any business from banking, e-commerce, real estate, homeland security, healthcare, marketing, the stock market, manufacturing, education, retail to government organizations depends on the data and analytics capabilities that are built and scaled. The speed of change in technology in recent years has been a real challenge for all businesses. To manage that, a significant number of organizations are exploring the BigData (BD) infrastructure that helps them to take advantage of new opportunities while saving costs. Timely transformation of information is also critical for the survivability of an organization. Having the right information at the right time will enhance not only the knowledge of stakeholders within an organization but also providing them with a tool to make the right decision at the right moment. It is no longer enough to rely on a sampling of information about the organizations' customers. The decision-makers need to get vital insights into the customers' actual behavior, which requires enormous volumes of data to be processed. We believe that Big Data infrastructure is the key to successful Artificial Intelligence (AI) deployments and accurate, unbiased real-time insights. Big data solutions have a direct impact and changing the way the organization needs to work with help from AI and its components ML and DL. In this article, we discuss these topics"--



The Combination Of Data Driven Machine Learning Approaches And Prior Knowledge For Robust Medical Image Processing And Analysis


The Combination Of Data Driven Machine Learning Approaches And Prior Knowledge For Robust Medical Image Processing And Analysis
DOWNLOAD
Author : Jinming Duan
language : en
Publisher: Frontiers Media SA
Release Date : 2024-06-11

The Combination Of Data Driven Machine Learning Approaches And Prior Knowledge For Robust Medical Image Processing And Analysis written by Jinming Duan and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-11 with Medical categories.


With the availability of big image datasets and state-of-the-art computing hardware, data-driven machine learning approaches, particularly deep learning, have been used in numerous medical image (CT-scans, MRI, PET, SPECT, etc..) computing tasks, ranging from image reconstruction, super-resolution, segmentation, registration all the way to disease classification and survival prediction. However, training such high-precision approaches often require large amounts of data to be collected and labelled and high-capacity graphics processing units (GPUs) installed, which are resource intensive and hence not always practical. Other hurdles such as the generalization ability to unseen new data and difficulty to interpret and explain can prevent their deployment to those clinical applications which deem such abilities imperative.



Systems Biology And Data Driven Machine Learning Based Models In Personalized Cardiovascular Medicine


Systems Biology And Data Driven Machine Learning Based Models In Personalized Cardiovascular Medicine
DOWNLOAD
Author : Miguel Hueso
language : en
Publisher: Frontiers Media SA
Release Date : 2023-11-15

Systems Biology And Data Driven Machine Learning Based Models In Personalized Cardiovascular Medicine written by Miguel Hueso and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-15 with Medical categories.




Graph Powered Machine Learning


Graph Powered Machine Learning
DOWNLOAD
Author : Alessandro Negro
language : en
Publisher: Simon and Schuster
Release Date : 2021-10-05

Graph Powered Machine Learning written by Alessandro Negro and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-05 with Computers categories.


Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data. Summary In Graph-Powered Machine Learning, you will learn: The lifecycle of a machine learning project Graphs in big data platforms Data source modeling using graphs Graph-based natural language processing, recommendations, and fraud detection techniques Graph algorithms Working with Neo4J Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices. Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications. Graph-based machine learning techniques offer a powerful new perspective for machine learning in social networking, fraud detection, natural language processing, and recommendation systems. About the book Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks. What's inside Graphs in big data platforms Recommendations, natural language processing, fraud detection Graph algorithms Working with the Neo4J graph database About the reader For readers comfortable with machine learning basics. About the author Alessandro Negro is Chief Scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science. Table of Contents PART 1 INTRODUCTION 1 Machine learning and graphs: An introduction 2 Graph data engineering 3 Graphs in machine learning applications PART 2 RECOMMENDATIONS 4 Content-based recommendations 5 Collaborative filtering 6 Session-based recommendations 7 Context-aware and hybrid recommendations PART 3 FIGHTING FRAUD 8 Basic approaches to graph-powered fraud detection 9 Proximity-based algorithms 10 Social network analysis against fraud PART 4 TAMING TEXT WITH GRAPHS 11 Graph-based natural language processing 12 Knowledge graphs



Information Driven Planning And Control


Information Driven Planning And Control
DOWNLOAD
Author : Silvia Ferrari
language : en
Publisher: MIT Press
Release Date : 2021-07-06

Information Driven Planning And Control written by Silvia Ferrari and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-06 with Computers categories.


A unified framework for developing planning and control algorithms for active sensing, with examples of applications for specific sensor technologies. Active sensor systems, increasingly deployed in such applications as unmanned vehicles, mobile robots, and environmental monitoring, are characterized by a high degree of autonomy, reconfigurability, and redundancy. This book is the first to offer a unified framework for the development of planning and control algorithms for active sensing, with examples of applications for a range of specific sensor technologies. The methods presented can be characterized as information-driven because their goal is to optimize the value of information, rather than to optimize traditional guidance and navigation objectives.



Signal Processing Driven Machine Learning Techniques For Cardiovascular Data Processing


Signal Processing Driven Machine Learning Techniques For Cardiovascular Data Processing
DOWNLOAD
Author : Rajesh Kumar Tripathy
language : en
Publisher: Elsevier
Release Date : 2024-06-12

Signal Processing Driven Machine Learning Techniques For Cardiovascular Data Processing written by Rajesh Kumar Tripathy and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-12 with Computers categories.


Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis - Covers methodologies as well as experimental results and studies - Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications