Introduction To The H Principle

DOWNLOAD
Download Introduction To The H Principle PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To The H Principle book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To The H Principle
DOWNLOAD
Author : Y. Eliashberg
language : en
Publisher: American Mathematical Soc.
Release Date : 2002
Introduction To The H Principle written by Y. Eliashberg and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.
The latest volume in the AMS's high-profile GSM series. The book presents a very accessible exposition of a powerful, but difficult to explain method of solving Partial Differentiel Equations. Would make an excellent text for courses on modern methods for solvng Partial Differential Equations. Very readable treatise of an important and remarkable technique. Strong bookstore candidate.
Introduction To The H Principle
DOWNLOAD
Author : Y. Eliashberg
language : en
Publisher: American Mathematical Soc.
Release Date :
Introduction To The H Principle written by Y. Eliashberg and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
One of the most powerful modern methods of solving partial differential equations is Gromov's $h$-principle. It has also been, traditionally, one of the most difficult to explain. This book is the first broadly accessible exposition of the principle and its applications. The essence of the $h$-principle is the reduction of problems involving partial differential relations to problems of a purely homotopy-theoretic nature. Two famous examples of the $h$-principle are the Nash-Kuiper$C1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology. Gromov transformed these examples into a powerful general method for proving the $h$-principle. Both of these examples and their explanations in terms of the $h$-principle arecovered in detail in the book. The authors cover two main embodiments of the principle: holonomic approximation and convex integration. The first is a version of the method of continuous sheaves. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. There are, naturally, many connections to symplectic and contact geometry. The book would be an excellent text for a graduate course on modern methods for solvingpartial differential equations. Geometers and analysts will also find much value in this very readable exposition of an important and remarkable technique.
Introduction To The H Principle
DOWNLOAD
Author : Kai Cieliebak
language : en
Publisher:
Release Date : 2024
Introduction To The H Principle written by Kai Cieliebak and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Differentiable manifolds categories.
Introduction To The H Principle
DOWNLOAD
Author : K. Cieliebak
language : en
Publisher: American Mathematical Society
Release Date : 2024-01-30
Introduction To The H Principle written by K. Cieliebak and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-30 with Mathematics categories.
In differential geometry and topology one often deals with systems of partial differential equations as well as partial differential inequalities that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the 1950s that the solvability of differential relations (i.e., equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash–Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale–Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle. The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis is made on applications to symplectic and contact geometry. The present book is the first broadly accessible exposition of the theory and its applications, making it an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists, and analysts will also find much value in this very readable exposition of an important and remarkable topic. This second edition of the book is significantly revised and expanded to almost twice of the original size. The most significant addition to the original book is the new part devoted to the method of wrinkling and its applications. Several other chapters (e.g., on multivalued holonomic approximation and foliations) are either added or completely rewritten.
Convex Integration Theory
DOWNLOAD
Author : David Spring
language : en
Publisher: Springer Science & Business Media
Release Date : 1998
Convex Integration Theory written by David Spring and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Mathematics categories.
This book provides a comprehensive study of convex integration theory in immersion-theoretic topology. Convex integration theory, developed originally by M. Gromov, provides general topological methods for solving the h-principle for a wide variety of problems in differential geometry and topology, with applications also to PDE theory and to optimal control theory. Though topological in nature, the theory is based on a precise analytical approximation result for higher order derivatives of functions, proved by M. Gromov. This book is the first to present an exacting record and exposition of all of the basic concepts and technical results of convex integration theory in higher order jet spaces, including the theory of iterated convex hull extensions and the theory of relative h-principles. The book should prove useful to graduate students and to researchers in topology, PDE theory and optimal control theory who wish to understand the h-principle and how it can be applied to solve problems in their respective disciplines.
Partial Differential Relations
DOWNLOAD
Author : Mikhael Gromov
language : en
Publisher: Springer Science & Business Media
Release Date : 1986-09
Partial Differential Relations written by Mikhael Gromov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986-09 with Mathematics categories.
The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.
An Introduction To The Uncertainty Principle
DOWNLOAD
Author : Sundaram Thangavelu
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-10-09
An Introduction To The Uncertainty Principle written by Sundaram Thangavelu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-10-09 with Mathematics categories.
In 1932 Norbert Wiener gave a series of lectures on Fourier analysis at the Univer sity of Cambridge. One result of Wiener's visit to Cambridge was his well-known text The Fourier Integral and Certain of its Applications; another was a paper by G. H. Hardy in the 1933 Journalofthe London Mathematical Society. As Hardy says in the introduction to this paper, This note originates from a remark of Prof. N. Wiener, to the effect that "a f and g [= j] cannot both be very small". ... The theo pair of transforms rems which follow give the most precise interpretation possible ofWiener's remark. Hardy's own statement of his results, lightly paraphrased, is as follows, in which f is an integrable function on the real line and f is its Fourier transform: x 2 m If f and j are both 0 (Ix1e- /2) for large x and some m, then each is a finite linear combination ofHermite functions. In particular, if f and j are x2 x 2 2 2 both O(e- / ), then f = j = Ae- / , where A is a constant; and if one x 2 2 is0(e- / ), then both are null.
Smith And Williams Introduction To The Principles Of Drug Design And Action
DOWNLOAD
Author : H. Jphn Smith
language : en
Publisher: CRC Press
Release Date : 2005-10-10
Smith And Williams Introduction To The Principles Of Drug Design And Action written by H. Jphn Smith and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-10-10 with Medical categories.
Advances in knowledge and technology have revolutionized the process of drug development, making it possible to design drugs for a given target or disease. Building on the foundation laid by the previous three editions, Smith and Williams Introduction to the Principles of Drug Design and Action, Fourth Edition includes the latest informatio
An Introduction To Contact Topology
DOWNLOAD
Author : Hansjörg Geiges
language : en
Publisher: Cambridge University Press
Release Date : 2008-03-13
An Introduction To Contact Topology written by Hansjörg Geiges and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-13 with Mathematics categories.
This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.
An Introductory Course On Mathematical Game Theory
DOWNLOAD
Author : Julio González-Díaz
language : en
Publisher: American Mathematical Society
Release Date : 2021-10-22
An Introductory Course On Mathematical Game Theory written by Julio González-Díaz and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-22 with Mathematics categories.
Game theory provides a mathematical setting for analyzing competition and cooperation in interactive situations. The theory has been famously applied in economics, but is relevant in many other sciences, such as political science, biology, and, more recently, computer science. This book presents an introductory and up-to-date course on game theory addressed to mathematicians and economists, and to other scientists having a basic mathematical background. The book is self-contained, providing a formal description of the classic game-theoretic concepts together with rigorous proofs of the main results in the field. The theory is illustrated through abundant examples, applications, and exercises. The style is distinctively concise, while offering motivations and interpretations of the theory to make the book accessible to a wide readership. The basic concepts and results of game theory are given a formal treatment, and the mathematical tools necessary to develop them are carefully presented. Cooperative games are explained in detail, with bargaining and TU-games being treated as part of a general framework. The authors stress the relation between game theory and operations research. The book is suitable for a graduate or an advanced undergraduate course on game theory.