Machine Learning Using Approximate Inference

DOWNLOAD
Download Machine Learning Using Approximate Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Using Approximate Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning Using Approximate Inference
DOWNLOAD
Author : Christian Andersson Naesseth
language : en
Publisher: Linköping University Electronic Press
Release Date : 2018-11-27
Machine Learning Using Approximate Inference written by Christian Andersson Naesseth and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-27 with categories.
Automatic decision making and pattern recognition under uncertainty are difficult tasks that are ubiquitous in our everyday life. The systems we design, and technology we develop, requires us to coherently represent and work with uncertainty in data. Probabilistic models and probabilistic inference gives us a powerful framework for solving this problem. Using this framework, while enticing, results in difficult-to-compute integrals and probabilities when conditioning on the observed data. This means we have a need for approximate inference, methods that solves the problem approximately using a systematic approach. In this thesis we develop new methods for efficient approximate inference in probabilistic models. There are generally two approaches to approximate inference, variational methods and Monte Carlo methods. In Monte Carlo methods we use a large number of random samples to approximate the integral of interest. With variational methods, on the other hand, we turn the integration problem into that of an optimization problem. We develop algorithms of both types and bridge the gap between them. First, we present a self-contained tutorial to the popular sequential Monte Carlo (SMC) class of methods. Next, we propose new algorithms and applications based on SMC for approximate inference in probabilistic graphical models. We derive nested sequential Monte Carlo, a new algorithm particularly well suited for inference in a large class of high-dimensional probabilistic models. Then, inspired by similar ideas we derive interacting particle Markov chain Monte Carlo to make use of parallelization to speed up approximate inference for universal probabilistic programming languages. After that, we show how we can make use of the rejection sampling process when generating gamma distributed random variables to speed up variational inference. Finally, we bridge the gap between SMC and variational methods by developing variational sequential Monte Carlo, a new flexible family of variational approximations.
Information Theory Inference And Learning Algorithms
DOWNLOAD
Author : David J. C. MacKay
language : en
Publisher: Cambridge University Press
Release Date : 2003-09-25
Information Theory Inference And Learning Algorithms written by David J. C. MacKay and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-09-25 with Computers categories.
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Advanced Lectures On Machine Learning
DOWNLOAD
Author : Olivier Bousquet
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-09-02
Advanced Lectures On Machine Learning written by Olivier Bousquet and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-02 with Computers categories.
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.
Variational Methods For Machine Learning With Applications To Deep Networks
DOWNLOAD
Author : Lucas Pinheiro Cinelli
language : en
Publisher: Springer Nature
Release Date : 2021-05-10
Variational Methods For Machine Learning With Applications To Deep Networks written by Lucas Pinheiro Cinelli and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-10 with Technology & Engineering categories.
This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning; Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes; Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.
Bayesian Reasoning And Machine Learning
DOWNLOAD
Author : David Barber
language : en
Publisher: Cambridge University Press
Release Date : 2012-02-02
Bayesian Reasoning And Machine Learning written by David Barber and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-02 with Computers categories.
Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
Intelligent Robotics And Applications
DOWNLOAD
Author : Honghai Liu
language : en
Publisher: Springer Nature
Release Date : 2022-08-09
Intelligent Robotics And Applications written by Honghai Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-09 with Computers categories.
The 4-volume set LNAI 13455 - 13458 constitutes the proceedings of the 15th International Conference on Intelligent Robotics and Applications, ICIRA 2022, which took place in Harbin China, during August 2022. The 284 papers included in these proceedings were carefully reviewed and selected from 442 submissions. They were organized in topical sections as follows: Robotics, Mechatronics, Applications, Robotic Machining, Medical Engineering, Soft and Hybrid Robots, Human-robot Collaboration, Machine Intelligence, and Human Robot Interaction.
Computer Vision Eccv 2010
DOWNLOAD
Author : Kostas Daniilidis
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-30
Computer Vision Eccv 2010 written by Kostas Daniilidis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-30 with Computers categories.
The six-volume set comprising LNCS volumes 6311 until 6313 constitutes the refereed proceedings of the 11th European Conference on Computer Vision, ECCV 2010, held in Heraklion, Crete, Greece, in September 2010. The 325 revised papers presented were carefully reviewed and selected from 1174 submissions. The papers are organized in topical sections on object and scene recognition; segmentation and grouping; face, gesture, biometrics; motion and tracking; statistical models and visual learning; matching, registration, alignment; computational imaging; multi-view geometry; image features; video and event characterization; shape representation and recognition; stereo; reflectance, illumination, color; medical image analysis.
Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10
Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Distributed Resource Location Using Approximate Inference
DOWNLOAD
Author : Keith Bradley Vanderveen
language : en
Publisher:
Release Date : 1998
Distributed Resource Location Using Approximate Inference written by Keith Bradley Vanderveen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with categories.
Robotics
DOWNLOAD
Author : Nicholas Roy
language : en
Publisher: MIT Press
Release Date : 2013-07-05
Robotics written by Nicholas Roy and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-05 with Technology & Engineering categories.
Papers from a flagship conference reflect the latest developments in the field, including work in such rapidly advancing areas as human-robot interaction and formal methods. Robotics: Science and Systems VIII spans a wide spectrum of robotics, bringing together contributions from researchers working on the mathematical foundations of robotics, robotics applications, and analysis of robotics systems. This volume presents the proceedings of the eighth annual Robotics: Science and Systems (RSS) conference, held in July 2012 at the University of Sydney. The contributions reflect the exciting diversity of the field, presenting the best, the newest, and the most challenging work on such topics as mechanisms, kinematics, dynamics and control, human-robot interaction and human-centered systems, distributed systems, mobile systems and mobility, manipulation, field robotics, medical robotics, biological robotics, robot perception, and estimation and learning in robotic systems. The conference and its proceedings reflect not only the tremendous growth of robotics as a discipline but also the desire in the robotics community for a flagship event at which the best of the research in the field can be presented.