[PDF] Mastering Deep Learning Fundamentals - eBooks Review

Mastering Deep Learning Fundamentals


Mastering Deep Learning Fundamentals
DOWNLOAD

Download Mastering Deep Learning Fundamentals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Deep Learning Fundamentals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Deep Learning Fundamentals With Python


Mastering Deep Learning Fundamentals With Python
DOWNLOAD
Author : Richard Wilson
language : en
Publisher: Independently Published
Release Date : 2019-07-14

Mastering Deep Learning Fundamentals With Python written by Richard Wilson and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-14 with categories.


★★Buy the Paperback Version of this Book and get the Kindle Book version for FREE ★★ Step into the fascinating world of data science.. You to participate in the revolution that brings artificial intelligence back to the heart of our society, thanks to data scientists. Data science consists in translating problems of any other nature into quantitative modeling problems, solved by processing algorithms. This book, designed for anyone wishing to learn Deep Learning. This book presents the main techniques: deep neural networks, able to model all kinds of data, convolution networks, able to classify images, segment them and discover the objects or people who are there, recurring networks, it contains sample code so that the reader can easily test and run the programs. On the program: Deep learning Neural Networks and Deep Learning Deep Learning Parameters and Hyper-parameters Deep Neural Networks Layers Deep Learning Activation Functions Convolutional Neural Network Python Data Structures Best practices in Python and Zen of Python Installing Python Python These are some of the topics covered in this book: fundamentals of deep learning fundamentals of probability fundamentals of statistics fundamentals of linear algebra introduction to machine learning and deep learning fundamentals of machine learning fundamentals of neural networks and deep learning deep learning parameters and hyper-parameters deep neural networks layers deep learning activation functions convolutional neural network Deep learning in practice (in jupyter notebooks) python data structures best practices in python and zen of python installing python The following are the objectives of this book: To help you understand deep learning in detail To help you know how to get started with deep learning in Python by setting up the coding environment. To help you transition from a deep learning Beginner to a Professional. To help you learn how to develop a complete and functional artificial neural network model in Python on your own. And more Get this book now to learn more about -- Deep learning in Python by setting up the coding environment.!



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Mastering Deep Learning Fundamentals


Mastering Deep Learning Fundamentals
DOWNLOAD
Author : Ai Publishing
language : en
Publisher: AI Publishing
Release Date : 2019-06-09

Mastering Deep Learning Fundamentals written by Ai Publishing and has been published by AI Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-09 with categories.


** ONE HOUR FREE VIDEO COURSE IN DEEP LEARNING INCLUDED** **Get your copy now, the price will change soon**You are interested in deep learning, but don't know how to get startedLet us help youWho are the book for? Are a college student and want more than your university course offers Are you a student interested in a career in Data science? Are you a programmer who wants to make a career switch into data science and AI? Are you an engineer who wants to use new data science techniques at your current job? Are you an entrepreneur who dreams of a data science but do not yet know the basics? Are you a hobbyist who wants to build cool data science projects? Are you a data scientist practitioner and want to broaden your area of expertise? If the answer to any of the above questions is a YES, this book is for you.We have designed this book for beginners in mind and our goal is to prepare students with practical skills to solve real-world problems and to stand out in the job market.This book are not for shallow learners who simply want to copy-paste code. This book will require your time and commitment.Our book is different from other books?If you are searching for a step by step guide to learn deep learning and AI from scratch or are interested in the current updates of the AI world, our book is just the right one for you. This book paves beginners' road towards the path of deep learning concepts and algorithms without any traditional complexity of mathematical formulas.With the help of graphs and images, this books is the easiest to comprehend even by those who have no previous technological knowledge of machine learning. Moreover, our book, with its comprehensive content, prepares the readers for higher advanced courses.We strive to provide world-class data science and AI education at reasonable prices. To achieve that, we have put in a lot of planning and efforts to provide a rich learning experience for the students.What's Inside This Book? Part I: Fundamentals of Deep learning Fundamentals of Probability Fundamentals of Statistics Fundamentals of Linear Algebra Introduction to Machine Learning and Deep Learning Fundamentals of Machine Learning Fundamentals of Neural Networks and Deep Learning Deep Learning Parameters and Hyper-parameters Deep Neural Networks Layers Deep Learning Activation Functions Deep Learning Loss Functions Deep Learning Optimization Algorithms Convolutional Neural Network Recurrent Neural Networks LSTM Recursive Neural Networks Bonus Course Conclusion Part II: Deep Learning in Practice (In Jupyter notebooks) Python for Beginners Python Data Structures Python Function Object Oriented Programming in Python Best practices in Python and Zen of Python Installing Python Numpy, Pandas, Matplotlib and Scikit-learn Evaluating a model's performance Keras and Tensorflow Deep learning workstation: Jupyter Notebooks and Getting Binary Classification Building Deep Learning Model Convolutional Neural Networks in Keras Data Preparation Model Building Training and Testing Deep learning for text and sequences Brief introduction to Google Colab Data Preparation Data Wrangling and Analysis Recurrent Neural Network (RNN) ** MONEY BACK GUARANTEE BY AMAZON **If you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform or contact us (our email inside the book).



Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment


Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-17

Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-17 with Computers categories.


Explore the realm of artificial intelligence with "Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment." This all-encompassing guide provides an in-depth understanding of AI, machine learning, and deep learning, powered by TensorFlow—Google's leading AI framework. Whether you're a beginner starting your AI journey or a professional looking to elevate your expertise in AI model deployment, this book is tailored to meet your needs. Covering crucial topics like neural network design, convolutional and recurrent neural networks, natural language processing, and computer vision, it offers a robust introduction to TensorFlow and its AI applications. Through hands-on examples and a focus on practical solutions, you'll learn how to apply TensorFlow to solve real-world challenges. From theoretical foundations to deployment techniques, "Mastering Deep Learning with TensorFlow" takes you through every step, preparing you to build, fine-tune, and deploy advanced AI models. By the end, you’ll be ready to harness TensorFlow’s full potential, making strides in the rapidly evolving field of artificial intelligence. This book is an indispensable resource for anyone eager to engage with or advance in AI.



Mastering Deep Learning From Basics To Advanced Techniques


Mastering Deep Learning From Basics To Advanced Techniques
DOWNLOAD
Author : Dr.M.Kasthuri
language : en
Publisher: SK Research Group of Companies
Release Date : 2024-07-10

Mastering Deep Learning From Basics To Advanced Techniques written by Dr.M.Kasthuri and has been published by SK Research Group of Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-10 with Fiction categories.


Dr.M.Kasthuri, Associate Professor, Department of Computer Science, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India. Mrs.K.Kalaiselvi, Guest Lecturer, Department of Computer Science, Thanthai Periyar Government Arts and Science College, Tiruchirappalli, Tamil Nadu, India.



Mastering Deep Learning


Mastering Deep Learning
DOWNLOAD
Author : Cybellium
language : en
Publisher: Cybellium Ltd
Release Date :

Mastering Deep Learning written by Cybellium and has been published by Cybellium Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Unleash the Power of Neural Networks for Intelligent Solutions In the landscape of artificial intelligence and machine learning, deep learning stands as a revolutionary force that is shaping the future of technology. "Mastering Deep Learning" is your ultimate guide to comprehending and harnessing the potential of deep neural networks, empowering you to create intelligent solutions that drive innovation. About the Book: As the capabilities of technology expand, deep learning emerges as a transformative approach that unlocks the potential of artificial intelligence. "Mastering Deep Learning" offers a comprehensive exploration of this cutting-edge field—an indispensable toolkit for data scientists, engineers, and enthusiasts. This book caters to both beginners and experienced learners aiming to excel in deep learning concepts, algorithms, and applications. Key Features: Deep Learning Fundamentals: Begin by understanding the core principles of deep learning. Learn about neural networks, activation functions, and backpropagation—the building blocks of the subject. Deep Neural Architectures: Dive into the world of deep neural architectures. Explore techniques for building and designing different types of neural networks, including feedforward, convolutional, and recurrent networks. Training and Optimization: Grasp the art of training deep neural networks. Understand techniques for weight initialization, gradient descent, and optimization algorithms to ensure efficient learning. Natural Language Processing: Explore deep learning applications in natural language processing. Learn how to process and understand text, sentiment analysis, and language generation. Computer Vision: Understand the significance of deep learning in computer vision. Explore techniques for image classification, object detection, and image generation. Reinforcement Learning: Delve into the realm of reinforcement learning. Explore techniques for training agents to interact with environments and make intelligent decisions. Transfer Learning and Pretrained Models: Grasp the power of transfer learning. Learn how to leverage pretrained models and adapt them to new tasks. Real-World Applications: Gain insights into how deep learning is applied across industries. From healthcare to finance, discover the diverse applications of deep neural networks. Why This Book Matters: In an era of rapid technological advancement, mastering deep learning offers a competitive edge. "Mastering Deep Learning" empowers data scientists, engineers, and technology enthusiasts to leverage these cutting-edge concepts, enabling them to create intelligent solutions that drive innovation and redefine possibilities. Unleash the Future of AI: In the landscape of artificial intelligence, deep learning is reshaping technology and innovation. "Mastering Deep Learning" equips you with the knowledge needed to leverage deep neural networks, enabling you to create intelligent solutions that push the boundaries of possibilities. Whether you're a seasoned practitioner or new to the world of deep learning, this book will guide you in building a solid foundation for effective AI-driven solutions. Your journey to mastering deep learning starts here. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com



Deep Learning Fundamentals Theory And Applications


Deep Learning Fundamentals Theory And Applications
DOWNLOAD
Author : Dr. R. Kanagaraj
language : en
Publisher: AG PUBLISHING HOUSE (AGPH Books)
Release Date :

Deep Learning Fundamentals Theory And Applications written by Dr. R. Kanagaraj and has been published by AG PUBLISHING HOUSE (AGPH Books) this book supported file pdf, txt, epub, kindle and other format this book has been release on with Study Aids categories.


More complex computing approaches have grown in popularity as technology has improved and big data has emerged. Increasing customer demand for better goods, as well as firms trying to better exploit their resources, have been driving this trend. Machine learning is a field that combines statistics, mathematics, and computer science to create and analyze algorithms that improve their own behavior in an iterative fashion by design. Initially, the discipline was committed to the development of artificial intelligence, but owing to the constraints of theory and technology at the time, it became more reasonable to concentrate these algorithms on particular tasks. Deep learning is a sort of machine learning and artificial intelligence (AI) that mimics how people acquire certain types of knowledge. Deep learning is a critical component of data science, which also covers statistics and predictive modeling. Deep learning is particularly advantageous to data scientists who are responsible with gathering, analyzing, and interpreting massive volumes of data; deep learning speeds up and simplifies this process. In this book the concept of deep learning under the machine learning is explained in every aspect. Whether, it's their fundamental concepts or the application of deep learning on daily basis.



Artificial Intelligence And Machine Learning Fundamentals


Artificial Intelligence And Machine Learning Fundamentals
DOWNLOAD
Author : Zsolt Nagy
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-12

Artificial Intelligence And Machine Learning Fundamentals written by Zsolt Nagy and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with Computers categories.


Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).



Deep Learning With Python


Deep Learning With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2016-05-13

Deep Learning With Python written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-13 with Computers categories.


Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.



Mastering Machine Learning Algorithms


Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31

Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.


Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.