Modeling By Nonlinear Differential Equations

DOWNLOAD
Download Modeling By Nonlinear Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling By Nonlinear Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Modeling By Nonlinear Differential Equations
DOWNLOAD
Author : Paul E. Phillipson
language : en
Publisher: World Scientific
Release Date : 2009
Modeling By Nonlinear Differential Equations written by Paul E. Phillipson and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.
"This book aims to provide mathematical analyses of nonlinear differential equations, which have proved pivotal to understanding many phenomena in physics, chemistry and biology. Topics of focus are autocatalysis and dynamics of molecular evolution, relaxation oscillations, deterministic chaos, reaction diffusion driven chemical pattern formation, solitons and neuron dynamics. Included is a discussion of processes from the viewpoints of reversibility, reflected by conservative classical mechanics, and irreversibility introduced by the dissipative role of diffusion. Each chapter presents the subject matter from the point of one or a few key equations, whose properties and consequences are amplified by approximate analytic solutions that are developed to support graphical display of exact computer solutions."--back cover.
Numerical Methods For Nonlinear Partial Differential Equations
DOWNLOAD
Author : Sören Bartels
language : en
Publisher: Springer
Release Date : 2015-01-19
Numerical Methods For Nonlinear Partial Differential Equations written by Sören Bartels and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-19 with Mathematics categories.
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Modeling By Nonlinear Differential Equations
DOWNLOAD
Author : Paul Edgar Phillipson
language : en
Publisher: World Scientific
Release Date : 2009
Modeling By Nonlinear Differential Equations written by Paul Edgar Phillipson and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.
This book aims to provide mathematical analyses of nonlinear differential equations, which have proved pivotal to understanding many phenomena in physics, chemistry and biology. Topics of focus are autocatalysis and dynamics of molecular evolution, relaxation oscillations, deterministic chaos, reaction diffusion driven chemical pattern formation, solitons and neuron dynamics. Included is a discussion of processes from the viewpoints of reversibility, reflected by conservative classical mechanics, and irreversibility introduced by the dissipative role of diffusion. Each chapter presents the subject matter from the point of one or a few key equations, whose properties and consequences are amplified by approximate analytic solutions that are developed to support graphical display of exact computer solutions. Sample Chapter(s). Chapter 1: Theme and Contents of this Book (85 KB). Contents: Theme and Contents of this Book; Processes in closed and Open Systems; Dynamics of Molecular Evolution; Relaxation Oscillations; Order and Chaos; Reaction Diffusion Dynamics; Solitons; Neuron Pulse Propagation; Time Reversal, Dissipation and Conservation. Readership: Advanced undergraduates, graduate students and researchers in physics, chemistry, biology or bioinformatics who are interested in mathematical modeling.
Numerical Methods For Nonlinear Engineering Models
DOWNLOAD
Author : John R. Hauser
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-03-24
Numerical Methods For Nonlinear Engineering Models written by John R. Hauser and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-24 with Technology & Engineering categories.
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.
Nonlinear Partial Differential Equations With Applications
DOWNLOAD
Author : Tomás Roubicek
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-01-17
Nonlinear Partial Differential Equations With Applications written by Tomás Roubicek and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-17 with Mathematics categories.
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Nonlinear Differential Equation Models
DOWNLOAD
Author : Ansgar Jüngel
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-06-14
Nonlinear Differential Equation Models written by Ansgar Jüngel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-06-14 with Mathematics categories.
The papers in this book originate from lectures which were held at the "Vienna Workshop on Nonlinear Models and Analysis" – May 20–24, 2002. They represent a cross-section of the research field Applied Nonlinear Analysis with emphasis on free boundaries, fully nonlinear partial differential equations, variational methods, quasilinear partial differential equations and nonlinear kinetic models.
Nonlinear Pdes
DOWNLOAD
Author : Marius Ghergu
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-21
Nonlinear Pdes written by Marius Ghergu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-21 with Mathematics categories.
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
Lectures On Nonlinear Differential Equation Models In Biology
DOWNLOAD
Author : James Dickson Murray
language : en
Publisher: Oxford University Press, USA
Release Date : 1977
Lectures On Nonlinear Differential Equation Models In Biology written by James Dickson Murray and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 1977 with Mathematics categories.
Methods Of Mathematical Modelling
DOWNLOAD
Author : Thomas Witelski
language : en
Publisher: Springer
Release Date : 2015-09-18
Methods Of Mathematical Modelling written by Thomas Witelski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-18 with Mathematics categories.
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
Nonstandard Finite Difference Models Of Differential Equations
DOWNLOAD
Author : Ronald E. Mickens
language : en
Publisher: World Scientific
Release Date : 1994
Nonstandard Finite Difference Models Of Differential Equations written by Ronald E. Mickens and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Mathematics categories.
This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.