[PDF] Monte Carlo Simulation And Resampling - eBooks Review

Monte Carlo Simulation And Resampling


Monte Carlo Simulation And Resampling
DOWNLOAD

Download Monte Carlo Simulation And Resampling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Monte Carlo Simulation And Resampling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Monte Carlo Simulation And Resampling Methods For Social Science


Monte Carlo Simulation And Resampling Methods For Social Science
DOWNLOAD
Author : Thomas M. Carsey
language : en
Publisher: SAGE Publications
Release Date : 2013-08-05

Monte Carlo Simulation And Resampling Methods For Social Science written by Thomas M. Carsey and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-05 with Social Science categories.


Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.



Monte Carlo Simulation And Resampling


Monte Carlo Simulation And Resampling
DOWNLOAD
Author : Thomas M. Carsey
language : en
Publisher:
Release Date : 2014

Monte Carlo Simulation And Resampling written by Thomas M. Carsey and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Monte Carlo method categories.


Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator 'in repeated samples', the book uses simulation to actually create those repeated samples and summarise the results.



Randomization Bootstrap And Monte Carlo Methods In Biology


Randomization Bootstrap And Monte Carlo Methods In Biology
DOWNLOAD
Author : Bryan F.J. Manly
language : en
Publisher: CRC Press
Release Date : 2018-10-03

Randomization Bootstrap And Monte Carlo Methods In Biology written by Bryan F.J. Manly and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-03 with Mathematics categories.


Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.



Sequential Monte Carlo Methods In Practice


Sequential Monte Carlo Methods In Practice
DOWNLOAD
Author : Arnaud Doucet
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Sequential Monte Carlo Methods In Practice written by Arnaud Doucet and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest, have made it possible to solve numerically many complex, non-standarard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modelling, neural networks,optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practicioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris- XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning.



An Introduction To Sequential Monte Carlo


An Introduction To Sequential Monte Carlo
DOWNLOAD
Author : Nicolas Chopin
language : en
Publisher: Springer Nature
Release Date : 2020-10-01

An Introduction To Sequential Monte Carlo written by Nicolas Chopin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-01 with Mathematics categories.


This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.



Feature Engineering And Selection


Feature Engineering And Selection
DOWNLOAD
Author : Max Kuhn
language : en
Publisher: CRC Press
Release Date : 2019-07-25

Feature Engineering And Selection written by Max Kuhn and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-25 with Business & Economics categories.


The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.



Monte Carlo Simulation


Monte Carlo Simulation
DOWNLOAD
Author : Christopher Z. Mooney
language : en
Publisher: SAGE
Release Date : 1997-04-07

Monte Carlo Simulation written by Christopher Z. Mooney and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-04-07 with Mathematics categories.


Aimed at researchers across the social sciences, this book explains the logic behind the Monte Carlo simulation method and demonstrates its uses for social and behavioural research.



Nonparametric Monte Carlo Tests And Their Applications


Nonparametric Monte Carlo Tests And Their Applications
DOWNLOAD
Author : Li-Xing Zhu
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-08

Nonparametric Monte Carlo Tests And Their Applications written by Li-Xing Zhu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-08 with Mathematics categories.


A fundamental issue in statistical analysis is testing the fit of a particular probability model to a set of observed data. Monte Carlo approximation to the null distribution of the test provides a convenient and powerful means of testing model fit. Nonparametric Monte Carlo Tests and Their Applications proposes a new Monte Carlo-based methodology to construct this type of approximation when the model is semistructured. When there are no nuisance parameters to be estimated, the nonparametric Monte Carlo test can exactly maintain the significance level, and when nuisance parameters exist, this method can allow the test to asymptotically maintain the level. The author addresses both applied and theoretical aspects of nonparametric Monte Carlo tests. The new methodology has been used for model checking in many fields of statistics, such as multivariate distribution theory, parametric and semiparametric regression models, multivariate regression models, varying-coefficient models with longitudinal data, heteroscedasticity, and homogeneity of covariance matrices. This book will be of interest to both practitioners and researchers investigating goodness-of-fit tests and resampling approximations. Every chapter of the book includes algorithms, simulations, and theoretical deductions. The prerequisites for a full appreciation of the book are a modest knowledge of mathematical statistics and limit theorems in probability/empirical process theory. The less mathematically sophisticated reader will find Chapters 1, 2 and 6 to be a comprehensible introduction on how and where the new method can apply and the rest of the book to be a valuable reference for Monte Carlo test approximation and goodness-of-fit tests. Lixing Zhu is Associate Professor of Statistics at the University of Hong Kong. He is a winner of the Humboldt Research Award at Alexander-von Humboldt Foundation of Germany and an elected Fellow of the Institute of Mathematical Statistics. From the reviews: "These lecture notes discuss several topics in goodness-of-fit testing, a classical area in statistical analysis. ... The mathematical part contains detailed proofs of the theoretical results. Simulation studies illustrate the quality of the Monte Carlo approximation. ... this book constitutes a recommendable contribution to an active area of current research." Winfried Stute for Mathematical Reviews, Issue 2006 "...Overall, this is an interesting book, which gives a nice introduction to this new and specific field of resampling methods." Dongsheng Tu for Biometrics, September 2006



Mathematical Statistics With Resampling And R


Mathematical Statistics With Resampling And R
DOWNLOAD
Author : Laura M. Chihara
language : en
Publisher: John Wiley & Sons
Release Date : 2018-09-17

Mathematical Statistics With Resampling And R written by Laura M. Chihara and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-17 with Mathematics categories.


This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.



Introductory Econometrics


Introductory Econometrics
DOWNLOAD
Author : Humberto Barreto
language : en
Publisher: Cambridge University Press
Release Date : 2006

Introductory Econometrics written by Humberto Barreto and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Business & Economics categories.


This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.