[PDF] Monte Carlo Simulation And Resampling Methods For Social Science - eBooks Review

Monte Carlo Simulation And Resampling Methods For Social Science


Monte Carlo Simulation And Resampling Methods For Social Science
DOWNLOAD

Download Monte Carlo Simulation And Resampling Methods For Social Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Monte Carlo Simulation And Resampling Methods For Social Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Monte Carlo Simulation And Resampling Methods For Social Science


Monte Carlo Simulation And Resampling Methods For Social Science
DOWNLOAD
Author : Thomas M. Carsey
language : en
Publisher: SAGE Publications
Release Date : 2013-08-05

Monte Carlo Simulation And Resampling Methods For Social Science written by Thomas M. Carsey and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-05 with Social Science categories.


Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.



Monte Carlo Simulation And Resampling


Monte Carlo Simulation And Resampling
DOWNLOAD
Author : Thomas M. Carsey
language : en
Publisher:
Release Date : 2014

Monte Carlo Simulation And Resampling written by Thomas M. Carsey and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Monte Carlo method categories.


Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator 'in repeated samples', the book uses simulation to actually create those repeated samples and summarise the results.



Dependent Data In Social Sciences Research


Dependent Data In Social Sciences Research
DOWNLOAD
Author : Mark Stemmler
language : en
Publisher: Springer Nature
Release Date : 2024-10-21

Dependent Data In Social Sciences Research written by Mark Stemmler and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-21 with Social Science categories.


This book covers the following subjects: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). It presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. These include, for example, methods for the analysis of longitudinal data, corrections for dependency, and corrections for degrees of freedom. Researchers and graduate students in the social and behavioral sciences, education, econometrics, and medicine will find this up-to-date overview of modern statistical approaches for dealing with problems related to dependent data particularly useful.



Data Analytics For Discourse Analysis With Python


Data Analytics For Discourse Analysis With Python
DOWNLOAD
Author : Dennis Tay
language : en
Publisher: Taylor & Francis
Release Date : 2024-04-19

Data Analytics For Discourse Analysis With Python written by Dennis Tay and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-19 with Language Arts & Disciplines categories.


This concise volume, using examples of psychotherapy talk, showcases the potential applications of data analytics for advancing discourse research and other related disciplines. The book provides a brief primer on data analytics, defined as the science of analyzing raw data to reveal new insights and support decision making. Currently underutilized in discourse research, Tay draws on the case of psychotherapy talk, in which clients’ concerns are worked through via verbal interaction with therapists, to demonstrate how data analytics can address both practical and theoretical concerns. Each chapter follows a consistent structure, offering a streamlined walkthrough of a key technique, an example case study, and annotated Python code. The volume shows how techniques such as simulations, classification, clustering, and time series analysis can address such issues as incomplete data transcripts, therapist–client (a)synchrony, and client prognosis, offering inspiration for research, training, and practitioner self-reflection in psychotherapy and other discourse contexts. This volume is a valuable resource for discourse and linguistics researchers, particularly for those interested in complementary approaches to qualitative methods, as well as active practitioners.



Statistics By Simulation


Statistics By Simulation
DOWNLOAD
Author : Carsten F. Dormann
language : en
Publisher: Princeton University Press
Release Date : 2025-06-03

Statistics By Simulation written by Carsten F. Dormann and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-03 with Computers categories.


An accessible guide to understanding statistics using simulations, with examples from a range of scientific disciplines Real-world challenges such as small sample sizes, skewed distributions of data, biased sampling designs, and more predictors than data points are pushing the limits of classical statistical analysis. This textbook provides a new tool for the statistical toolkit: data simulations. It shows that using simulation and data-generating models is an excellent way to validate statistical reasoning and to augment study design and statistical analysis with planning and visualization. Although data simulations are not new to professional statisticians, Statistics by Simulation makes the approach accessible to a broader audience, with examples from many fields. It introduces the reasoning behind data simulation and then shows how to apply it in planning experiments or observational studies, developing analytical workflows, deploying model diagnostics, and developing new indices and statistical methods. • Covers all steps of statistical practice, from planning projects to post-hoc analysis and model checking • Provides examples from disciplines including sociology, psychology, ecology, economics, physics, and medicine • Includes R code for all examples, with data and code freely available online • Offers bullet-point outlines and summaries of each chapter • Minimizes the use of jargon and requires only basic statistical background and skills



Key Business Analytics


Key Business Analytics
DOWNLOAD
Author : Bernard Marr
language : en
Publisher: Pearson UK
Release Date : 2016-02-10

Key Business Analytics written by Bernard Marr and has been published by Pearson UK this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-10 with Business & Economics categories.


Key Business Analytics will help managers apply tools to turn data into insights that help them better understand their customers, optimize their internal processes and identify cost savings and growth opportunities. It includes analysis techniques within the following categories: Financial analytics – cashflow, profitability, sales forecasts Market analytics – market size, market trends, marketing channels Customer analytics – customer lifetime values, social media, customer needs Employee analytics – capacity, performance, leadership Operational analytics – supply chains, competencies, environmental impact Bare business analytics – sentiments, text, correlations Each tool will follow the bestselling Key format of being 5-6 pages long, broken into short sharp advice on the essentials: What is it? When should I use it? How do I use it? Tips and pitfalls Further reading This essential toolkit also provides an invaluable section on how to gather original data yourself through surveys, interviews, focus groups, etc.



Bootstrapping


Bootstrapping
DOWNLOAD
Author : Felix Bittmann
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2021-04-19

Bootstrapping written by Felix Bittmann and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-19 with Business & Economics categories.


Bootstrapping is a conceptually simple statistical technique to increase the quality of estimates, conduct robustness checks and compute standard errors for virtually any statistic. This book provides an intelligible and compact introduction for students, scientists and practitioners. It not only gives a clear explanation of the underlying concepts but also demonstrates the application of bootstrapping using Python and Stata.



Linear Regression Models


Linear Regression Models
DOWNLOAD
Author : John P. Hoffmann
language : en
Publisher: CRC Press
Release Date : 2021-09-12

Linear Regression Models written by John P. Hoffmann and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-12 with Mathematics categories.


Research in social and behavioral sciences has benefited from linear regression models (LRMs) for decades to identify and understand the associations among a set of explanatory variables and an outcome variable. Linear Regression Models: Applications in R provides you with a comprehensive treatment of these models and indispensable guidance about how to estimate them using the R software environment. After furnishing some background material, the author explains how to estimate simple and multiple LRMs in R, including how to interpret their coefficients and understand their assumptions. Several chapters thoroughly describe these assumptions and explain how to determine whether they are satisfied and how to modify the regression model if they are not. The book also includes chapters on specifying the correct model, adjusting for measurement error, understanding the effects of influential observations, and using the model with multilevel data. The concluding chapter presents an alternative model—logistic regression—designed for binary or two-category outcome variables. The book includes appendices that discuss data management and missing data and provides simulations in R to test model assumptions. Features Furnishes a thorough introduction and detailed information about the linear regression model, including how to understand and interpret its results, test assumptions, and adapt the model when assumptions are not satisfied. Uses numerous graphs in R to illustrate the model’s results, assumptions, and other features. Does not assume a background in calculus or linear algebra, rather, an introductory statistics course and familiarity with elementary algebra are sufficient. Provides many examples using real-world datasets relevant to various academic disciplines. Fully integrates the R software environment in its numerous examples. The book is aimed primarily at advanced undergraduate and graduate students in social, behavioral, health sciences, and related disciplines, taking a first course in linear regression. It could also be used for self-study and would make an excellent reference for any researcher in these fields. The R code and detailed examples provided throughout the book equip the reader with an excellent set of tools for conducting research on numerous social and behavioral phenomena. John P. Hoffmann is a professor of sociology at Brigham Young University where he teaches research methods and applied statistics courses and conducts research on substance use and criminal behavior.



Reinforcement Learning And Stochastic Optimization


Reinforcement Learning And Stochastic Optimization
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-15

Reinforcement Learning And Stochastic Optimization written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-15 with Mathematics categories.


REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.



Regression Models For Categorical Count And Related Variables


Regression Models For Categorical Count And Related Variables
DOWNLOAD
Author : John P. Hoffmann
language : en
Publisher: Univ of California Press
Release Date : 2016-08-16

Regression Models For Categorical Count And Related Variables written by John P. Hoffmann and has been published by Univ of California Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-16 with Mathematics categories.


Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists counting the number of offenses people commit, health scientists studying the number of suicides across neighborhoods, and psychologists modeling mental health treatment success are all interested in outcomes that are not continuous. Instead, they must measure and analyze these events and phenomena in a discrete manner. This book provides an introduction and overview of several statistical models designed for these types of outcomes—all presented with the assumption that the reader has only a good working knowledge of elementary algebra and has taken introductory statistics and linear regression analysis. Numerous examples from the social sciences demonstrate the practical applications of these models. The chapters address logistic and probit models, including those designed for ordinal and nominal variables, regular and zero-inflated Poisson and negative binomial models, event history models, models for longitudinal data, multilevel models, and data reduction techniques such as principal components and factor analysis. Each chapter discusses how to utilize the models and test their assumptions with the statistical software Stata, and also includes exercise sets so readers can practice using these techniques. Appendices show how to estimate the models in SAS, SPSS, and R; provide a review of regression assumptions using simulations; and discuss missing data. A companion website includes downloadable versions of all the data sets used in the book.