Sequential Monte Carlo Methods In Practice

DOWNLOAD
Download Sequential Monte Carlo Methods In Practice PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sequential Monte Carlo Methods In Practice book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Sequential Monte Carlo Methods In Practice
DOWNLOAD
Author : Arnaud Doucet
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Sequential Monte Carlo Methods In Practice written by Arnaud Doucet and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest, have made it possible to solve numerically many complex, non-standarard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modelling, neural networks,optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practicioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris- XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning.
An Introduction To Sequential Monte Carlo
DOWNLOAD
Author : Nicolas Chopin
language : en
Publisher: Springer Nature
Release Date : 2020-10-01
An Introduction To Sequential Monte Carlo written by Nicolas Chopin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-01 with Mathematics categories.
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.
Sequential Monte Carlo Methods For Nonlinear Discrete Time Filtering
DOWNLOAD
Author : Marcelo G. S. Bruno
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2013
Sequential Monte Carlo Methods For Nonlinear Discrete Time Filtering written by Marcelo G. S. Bruno and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Computers categories.
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.
Bayesian Theory
DOWNLOAD
Author : José M. Bernardo
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-25
Bayesian Theory written by José M. Bernardo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-25 with Mathematics categories.
This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics
Monte Carlo Statistical Methods
DOWNLOAD
Author : Christian Robert
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Monte Carlo Statistical Methods written by Christian Robert and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
Monte Carlo statistical methods, particularly those based on Markov chains, are now an essential component of the standard set of techniques used by statisticians. This new edition has been revised towards a coherent and flowing coverage of these simulation techniques, with incorporation of the most recent developments in the field. In particular, the introductory coverage of random variable generation has been totally revised, with many concepts being unified through a fundamental theorem of simulation There are five completely new chapters that cover Monte Carlo control, reversible jump, slice sampling, sequential Monte Carlo, and perfect sampling. There is a more in-depth coverage of Gibbs sampling, which is now contained in three consecutive chapters. The development of Gibbs sampling starts with slice sampling and its connection with the fundamental theorem of simulation, and builds up to two-stage Gibbs sampling and its theoretical properties. A third chapter covers the multi-stage Gibbs sampler and its variety of applications. Lastly, chapters from the previous edition have been revised towards easier access, with the examples getting more detailed coverage. This textbook is intended for a second year graduate course, but will also be useful to someone who either wants to apply simulation techniques for the resolution of practical problems or wishes to grasp the fundamental principles behind those methods. The authors do not assume familiarity with Monte Carlo techniques (such as random variable generation), with computer programming, or with any Markov chain theory (the necessary concepts are developed in Chapter 6). A solutions manual, which covers approximately 40% of the problems, is available for instructors who require the book for a course. Christian P. Robert is Professor of Statistics in the Applied Mathematics Department at Université Paris Dauphine, France. He is also Head of the Statistics Laboratoryat the Center for Research in Economics and Statistics (CREST) of the National Institute for Statistics and Economic Studies (INSEE) in Paris, and Adjunct Professor at Ecole Polytechnique. He has written three other books and won the 2004 DeGroot Prize for The Bayesian Choice, Second Edition, Springer 2001. He also edited Discretization and MCMC Convergence Assessment, Springer 1998. He has served as associate editor for the Annals of Statistics, Statistical Science and the Journal of the American Statistical Association. He is a fellow of the Institute of Mathematical Statistics, and a winner of the Young Statistician Award of the Société de Statistique de Paris in 1995. George Casella is Distinguished Professor and Chair, Department of Statistics, University of Florida. He has served as the Theory and Methods Editor of the Journal of the American Statistical Association and Executive Editor of Statistical Science. He has authored three other textbooks: Statistical Inference, Second Edition, 2001, with Roger L. Berger; Theory of Point Estimation, 1998, with Erich Lehmann; and Variance Components, 1992, with Shayle R. Searle and Charles E. McCulloch. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association, and an elected fellow of the International Statistical Institute.
Random Finite Sets For Robot Mapping Slam
DOWNLOAD
Author : John Stephen Mullane
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-05-19
Random Finite Sets For Robot Mapping Slam written by John Stephen Mullane and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-05-19 with Technology & Engineering categories.
The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.
Backward Simulation Methods For Monte Carlo Statistical Inference
DOWNLOAD
Author : Fredrik Lindsten
language : en
Publisher:
Release Date : 2013
Backward Simulation Methods For Monte Carlo Statistical Inference written by Fredrik Lindsten and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Digital computer simulation categories.
Backward Simulation Methods for Monte Carlo Statistical Inference presents and discusses various backward simulation methods for Monte Carlo statistical inference. The focus is on SMC-based backward simulators, which are useful for inference in analytically intractable models, such as nonlinear and/or non-Gaussian SSMs, but also in more general latent variable models.
Monte Carlo Strategies In Scientific Computing
DOWNLOAD
Author : Jun S. Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Monte Carlo Strategies In Scientific Computing written by Jun S. Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.
Bayesian Time Series Models
DOWNLOAD
Author : David Barber
language : en
Publisher: Cambridge University Press
Release Date : 2011-08-11
Bayesian Time Series Models written by David Barber and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-11 with Computers categories.
The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.