Multivariate Statistics And Matrices In Statistics

DOWNLOAD
Download Multivariate Statistics And Matrices In Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multivariate Statistics And Matrices In Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advanced Multivariate Statistics With Matrices
DOWNLOAD
Author : Tõnu Kollo
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-30
Advanced Multivariate Statistics With Matrices written by Tõnu Kollo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-30 with Mathematics categories.
The book presents important tools and techniques for treating problems in m- ern multivariate statistics in a systematic way. The ambition is to indicate new directions as well as to present the classical part of multivariate statistical analysis in this framework. The book has been written for graduate students and statis- cians who are not afraid of matrix formalism. The goal is to provide them with a powerful toolkit for their research and to give necessary background and deeper knowledge for further studies in di?erent areas of multivariate statistics. It can also be useful for researchers in applied mathematics and for people working on data analysis and data mining who can ?nd useful methods and ideas for solving their problems. Ithasbeendesignedasatextbookforatwosemestergraduatecourseonmultiva- ate statistics. Such a course has been held at the Swedish Agricultural University in 2001/02. On the other hand, it can be used as material for series of shorter courses. In fact, Chapters 1 and 2 have been used for a graduate course ”Matrices in Statistics” at University of Tartu for the last few years, and Chapters 2 and 3 formed the material for the graduate course ”Multivariate Asymptotic Statistics” in spring 2002. An advanced course ”Multivariate Linear Models” may be based on Chapter 4. A lot of literature is available on multivariate statistical analysis written for di?- ent purposes and for people with di?erent interests, background and knowledge.
Matrices For Statistics
DOWNLOAD
Author : M. J. R. Healy
language : en
Publisher: Oxford University Press
Release Date : 2000
Matrices For Statistics written by M. J. R. Healy and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.
Michael Healy's concise introduction to matrix theory has been re-written and revised to take into account recent developments in statistical practice. The more difficult topics have been expanded and some explanations have been simplified.
Multivariate Data Analysis On Matrix Manifolds
DOWNLOAD
Author : Nickolay Trendafilov
language : en
Publisher: Springer Nature
Release Date : 2021-09-15
Multivariate Data Analysis On Matrix Manifolds written by Nickolay Trendafilov and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-15 with Mathematics categories.
This graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix manifolds defined by the MDA model parameters, allowing them to be solved using (free) optimization software Manopt. The book includes numerous in-text examples as well as Manopt codes and software guides, which can be applied directly or used as templates for solving similar and new problems. The first two chapters provide an overview and essential background for studying MDA, giving basic information and notations. Next, it considers several sets of matrices routinely used in MDA as parameter spaces, along with their basic topological properties. A brief introduction to matrix (Riemannian) manifolds and optimization methods on them with Manopt complete the MDA prerequisite. The remaining chapters study individual MDA techniques in depth. The number of exercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data mining and data science, as well as theoretical computer science, machine learning and optimization. It is assumed that the readers have some familiarity with MDA and some experience with matrix analysis, computing, and optimization.
Multivariate Statistics
DOWNLOAD
Author : Wolfgang Härdle
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-27
Multivariate Statistics written by Wolfgang Härdle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-27 with Computers categories.
The authors have cleverly used exercises and their solutions to explore the concepts of multivariate data analysis. Broken down into three sections, this book has been structured to allow students in economics and finance to work their way through a well formulated exploration of this core topic. The first part of this book is devoted to graphical techniques. The second deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The final section contains a wide variety of exercises in applied multivariate data analysis.
Aspects Of Multivariate Statistical Theory
DOWNLOAD
Author : Robb J. Muirhead
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-25
Aspects Of Multivariate Statistical Theory written by Robb J. Muirhead and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-25 with Mathematics categories.
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . . the wealth of material on statistics concerning the multivariate normal distribution is quite exceptional. As such it is a very useful source of information for the general statistician and a must for anyone wanting to penetrate deeper into the multivariate field." -Mededelingen van het Wiskundig Genootschap "This book is a comprehensive and clearly written text on multivariate analysis from a theoretical point of view." -The Statistician Aspects of Multivariate Statistical Theory presents a classical mathematical treatment of the techniques, distributions, and inferences based on multivariate normal distribution. Noncentral distribution theory, decision theoretic estimation of the parameters of a multivariate normal distribution, and the uses of spherical and elliptical distributions in multivariate analysis are introduced. Advances in multivariate analysis are discussed, including decision theory and robustness. The book also includes tables of percentage points of many of the standard likelihood statistics used in multivariate statistical procedures. This definitive resource provides in-depth discussion of the multivariate field and serves admirably as both a textbook and reference.
Robust Statistics
DOWNLOAD
Author : Ricardo A. Maronna
language : en
Publisher: John Wiley & Sons
Release Date : 2019-01-04
Robust Statistics written by Ricardo A. Maronna and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Mathematics categories.
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Matrix Tricks For Linear Statistical Models
DOWNLOAD
Author : Simo Puntanen
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-08-24
Matrix Tricks For Linear Statistical Models written by Simo Puntanen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-24 with Mathematics categories.
In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple “tricks” which simplify and clarify the treatment of a problem—both for the student and for the professor. Of course, the concept of a trick is not uniquely defined—by a trick we simply mean here a useful important handy result. In this book we collect together our Top Twenty favourite matrix tricks for linear statistical models.
Matrix Based Introduction To Multivariate Data Analysis
DOWNLOAD
Author : Kohei Adachi
language : en
Publisher: Springer
Release Date : 2016-10-11
Matrix Based Introduction To Multivariate Data Analysis written by Kohei Adachi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-11 with Mathematics categories.
This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on singular value decomposition among theorems in matrix algebra. The book begins with an explanation of fundamental matrix operations and the matrix expressions of elementary statistics, followed by the introduction of popular multivariate procedures with advancing levels of matrix algebra chapter by chapter. This organization of the book allows readers without knowledge of matrices to deepen their understanding of multivariate data analysis.
Multivariate Statistics
DOWNLOAD
Author : Morris L. Eaton
language : en
Publisher:
Release Date : 2007
Multivariate Statistics written by Morris L. Eaton and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
Building from his lecture notes, Eaton (mathematics, U. of Minnesota) has designed this text to support either a one-year class in graduate-level multivariate courses or independent study. He presents a version of multivariate statistical theory in which vector space and invariance methods replace to a large extent more traditional multivariate methods. Using extensive examples and exercises Eaton describes vector space theory, random vectors, the normal distribution on a vector space, linear statistical models, matrix factorization and Jacobians, topological groups and invariant measures, first applications of invariance, the Wishart distribution, inferences for means in multivariate linear models and canonical correlation coefficients. Eaton also provides comments on selected exercises and a bibliography.
Multivariate Statistics And Matrices In Statistics
DOWNLOAD
Author : E. M. Tiit
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2020-05-18
Multivariate Statistics And Matrices In Statistics written by E. M. Tiit and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-18 with Mathematics categories.
No detailed description available for "Multivariate Statistics and Matrices in Statistics".